ﻻ يوجد ملخص باللغة العربية
Facial landmark detection aims to localize the anatomically defined points of human faces. In this paper, we study facial landmark detection from partially labeled facial images. A typical approach is to (1) train a detector on the labeled images; (2) generate new training samples using this detectors prediction as pseudo labels of unlabeled images; (3) retrain the detector on the labeled samples and partial pseudo labeled samples. In this way, the detector can learn from both labeled and unlabeled data to become robust. In this paper, we propose an interaction mechanism between a teacher and two students to generate more reliable pseudo labels for unlabeled data, which are beneficial to semi-supervised facial landmark detection. Specifically, the two students are instantiated as dual detectors. The teacher learns to judge the quality of the pseudo labels generated by the students and filter out unqualified samples before the retraining stage. In this way, the student detectors get feedback from their teacher and are retrained by premium data generated by itself. Since the two students are trained by different samples, a combination of their predictions will be more robust as the final prediction compared to either prediction. Extensive experiments on 300-W and AFLW benchmarks show that the interactions between teacher and students contribute to better utilization of the unlabeled data and achieves state-of-the-art performance.
Automatic and accurate detection of anatomical landmarks is an essential operation in medical image analysis with a multitude of applications. Recent deep learning methods have improved results by directly encoding the appearance of the captured anat
In this work, we use facial landmarks to make the deformation for facial images more authentic. The deformation includes the expansion of eyes and the shrinking of noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized
Knowledge Distillation, as a model compression technique, has received great attention. The knowledge of a well-performed teacher is distilled to a student with a small architecture. The architecture of the small student is often chosen to be similar
Recently, deep learning based facial landmark detection has achieved great success. Despite this, we notice that the semantic ambiguity greatly degrades the detection performance. Specifically, the semantic ambiguity means that some landmarks (e.g. t
Although heatmap regression is considered a state-of-the-art method to locate facial landmarks, it suffers from huge spatial complexity and is prone to quantization error. To address this, we propose a novel attentive one-dimensional heatmap regressi