ترغب بنشر مسار تعليمي؟ اضغط هنا

Zoom To Learn, Learn To Zoom

83   0   0.0 ( 0 )
 نشر من قبل Xuaner (Cecilia) Zhang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper shows that when applying machine learning to digital zoom for photography, it is beneficial to use real, RAW sensor data for training. Existing learning-based super-resolution methods do not use real sensor data, instead operating on RGB images. In practice, these approaches result in loss of detail and accuracy in their digitally zoomed output when zooming in on distant image regions. We also show that synthesizing sensor data by resampling high-resolution RGB images is an oversimplified approximation of real sensor data and noise, resulting in worse image quality. The key barrier to using real sensor data for training is that ground truth high-resolution imagery is missing. We show how to obtain the ground-truth data with optically zoomed images and contribute a dataset, SR-RAW, for real-world computational zoom. We use SR-RAW to train a deep network with a novel contextual bilateral loss (CoBi) that delivers critical robustness to mild misalignment in input-output image pairs. The trained network achieves state-of-the-art performance in 4X and 8X computational zoom.



قيم البحث

اقرأ أيضاً

Despite the recent success of stereo matching with convolutional neural networks (CNNs), it remains arduous to generalize a pre-trained deep stereo model to a novel domain. A major difficulty is to collect accurate ground-truth disparities for stereo pairs in the target domain. In this work, we propose a self-adaptation approach for CNN training, utilizing both synthetic training data (with ground-truth disparities) and stereo pairs in the new domain (without ground-truths). Our method is driven by two empirical observations. By feeding real stereo pairs of different domains to stereo models pre-trained with synthetic data, we see that: i) a pre-trained model does not generalize well to the new domain, producing artifacts at boundaries and ill-posed regions; however, ii) feeding an up-sampled stereo pair leads to a disparity map with extra details. To avoid i) while exploiting ii), we formulate an iterative optimization problem with graph Laplacian regularization. At each iteration, the CNN adapts itself better to the new domain: we let the CNN learn its own higher-resolution output; at the meanwhile, a graph Laplacian regularization is imposed to discriminatively keep the desired edges while smoothing out the artifacts. We demonstrate the effectiveness of our method in two domains: daily scenes collected by smartphone cameras, and street views captured in a driving car.
Attribute guided face image synthesis aims to manipulate attributes on a face image. Most existing methods for image-to-image translation can either perform a fixed translation between any two image domains using a single attribute or require trainin g data with the attributes of interest for each subject. Therefore, these methods could only train one specific model for each pair of image domains, which limits their ability in dealing with more than two domains. Another disadvantage of these methods is that they often suffer from the common problem of mode collapse that degrades the quality of the generated images. To overcome these shortcomings, we propose attribute guided face image generation method using a single model, which is capable to synthesize multiple photo-realistic face images conditioned on the attributes of interest. In addition, we adopt the proposed model to increase the realism of the simulated face images while preserving the face characteristics. Compared to existing models, synthetic face images generated by our method present a good photorealistic quality on several face datasets. Finally, we demonstrate that generated facial images can be used for synthetic data augmentation, and improve the performance of the classifier used for facial expression recognition.
We propose an end-to-end-trainable attention module for convolutional neural network (CNN) architectures built for image classification. The module takes as input the 2D feature vector maps which form the intermediate representations of the input ima ge at different stages in the CNN pipeline, and outputs a 2D matrix of scores for each map. Standard CNN architectures are modified through the incorporation of this module, and trained under the constraint that a convex combination of the intermediate 2D feature vectors, as parameterised by the score matrices, must textit{alone} be used for classification. Incentivised to amplify the relevant and suppress the irrelevant or misleading, the scores thus assume the role of attention values. Our experimental observations provide clear evidence to this effect: the learned attention maps neatly highlight the regions of interest while suppressing background clutter. Consequently, the proposed function is able to bootstrap standard CNN architectures for the task of image classification, demonstrating superior generalisation over 6 unseen benchmark datasets. When binarised, our attention maps outperform other CNN-based attention maps, traditional saliency maps, and top object proposals for weakly supervised segmentation as demonstrated on the Object Discovery dataset. We also demonstrate improved robustness against the fast gradient sign method of adversarial attack.
Learning is an inherently continuous phenomenon. When humans learn a new task there is no explicit distinction between training and inference. As we learn a task, we keep learning about it while performing the task. What we learn and how we learn it varies during different stages of learning. Learning how to learn and adapt is a key property that enables us to generalize effortlessly to new settings. This is in contrast with conventional settings in machine learning where a trained model is frozen during inference. In this paper we study the problem of learning to learn at both training and test time in the context of visual navigation. A fundamental challenge in navigation is generalization to unseen scenes. In this paper we propose a self-adaptive visual navigation method (SAVN) which learns to adapt to new environments without any explicit supervision. Our solution is a meta-reinforcement learning approach where an agent learns a self-supervised interaction loss that encourages effective navigation. Our experiments, performed in the AI2-THOR framework, show major improvements in both success rate and SPL for visual navigation in novel scenes. Our code and data are available at: https://github.com/allenai/savn .
Presenting high-resolution (HR) human appearance is always critical for the human-centric videos. However, current imagery equipment can hardly capture HR details all the time. Existing super-resolution algorithms barely mitigate the problem by only considering universal and low-level priors of im-age patches. In contrast, our algorithm is under bias towards the human body super-resolution by taking advantage of high-level prior defined by HR human appearance. Firstly, a motion analysis module extracts inherent motion pattern from the HR reference video to refine the pose estimation of the low-resolution (LR) sequence. Furthermore, a human body reconstruction module maps the HR texture in the reference frames onto a 3D mesh model. Consequently, the input LR videos get super-resolved HR human sequences are generated conditioned on the original LR videos as well as few HR reference frames. Experiments on an existing dataset and real-world data captured by hybrid cameras show that our approach generates superior visual quality of human body compared with the traditional method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا