ﻻ يوجد ملخص باللغة العربية
Black hole-main sequence star (BH-MS) binaries are one of the targets of the future data releases of the astrometric satellite {it Gaia}. They are supposed to be formed in two main sites: a galactic field and star clusters. However, previous work has never predicted the number of BH-MS binaries originating in the latter site. In this paper, we estimate the number of BH-MS binaries formed in open clusters and detectable with {it Gaia} based on the results of {it N}-body simulations. By considering interstellar extinction in the Milky Way (MW) and observational constraints, we predict $sim 10$ BH-MS binaries are observable. We also find that chemical abundance patterns of companion MSs will help us to identify the origin of the binaries as star clusters. Such MSs are not polluted by outflows of the BH progenitors, such as stellar winds and supernova ejecta. Chemical anomalies might be a good test to confirm the origin of binaries with relatively less massive MSs ($lesssim 5M_{odot}$), orbital periods ($sim 1.5;$year) and higher eccentricities ($e gtrsim 0.1$).
We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using direct N-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries
LIGO has detected gravitational waves from massive binary black hole mergers. In order to explain the origin of such massive stellar-mass black holes, extreme metal poor stars including first stars have been invoked. However, black holes do not carry
Hierarchical mergers are one of the distinctive signatures of binary black hole (BBH) formation through dynamical evolution. Here, we present a fast semi-analytic approach to simulate hierarchical mergers in nuclear star clusters (NSCs), globular clu
We study the compact binary population in star clusters, focusing on binaries containing black holes, using a self-consistent Monte Carlo treatment of dynamics and full stellar evolution. We find that the black holes experience strong mass segregatio
Gravitational waves from the binary black hole (BH) merger GW150914 may enlighten our understanding of ultra-luminous X-ray sources (ULXs), as BHs>30Msun can reach luminosities>4x10^39 erg s^-1 without exceeding their Eddington limit. It is then impo