ﻻ يوجد ملخص باللغة العربية
LIGO has detected gravitational waves from massive binary black hole mergers. In order to explain the origin of such massive stellar-mass black holes, extreme metal poor stars including first stars have been invoked. However, black holes do not carry information of the metallicity. In order to check the metallicity dependence of the black hole formation, we focus on galactic black hole-main sequence binaries (BH-MSs). Using a binary population synthesis method, we find that $gaia$ can detect $sim200-400$ BH-MSs whose metallicity is $zsun$ and $sim70-400$ BH-MSs whose metallicity is $0.1zsun$. With the spectroscopic observation on 4-m class telescopes, we can check the metallicity of BH-MSs. The metallicity dependence of the black hole formation might be checked by the astrometry and spectroscopic observations.
Black hole-main sequence star (BH-MS) binaries are one of the targets of the future data releases of the astrometric satellite {it Gaia}. They are supposed to be formed in two main sites: a galactic field and star clusters. However, previous work has
GW190521 is the compact binary with the largest masses observed to date, with at least one in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an Active Gal
Until recently, black holes (BHs) could be discovered only through accretion from other stars in X-ray binaries, or in merging double compact objects. Improvements in astrometric and spectroscopic measurements have made it possible to detect BHs also
We analyse the tidal disruption probability of potential neutron star--black hole (NSBH) merger gravitational wave (GW) events, including GW190426_152155, GW190814, GW200105_162426 and GW200115_042309, detected during the third observing run of the L
A 70Msun BH was discovered in Milky Way disk in a long period and almost circular detached binary system (LB-1) with a high metallicity 8Msun B star companion. Current consensus on the formation of BHs from high metallicity stars limits the black hol