ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-luminous X-ray sources and neutron-star-black-hole mergers from very massive close binaries at low metallicity

94   0   0.0 ( 0 )
 نشر من قبل Pablo Marchant Campos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational waves from the binary black hole (BH) merger GW150914 may enlighten our understanding of ultra-luminous X-ray sources (ULXs), as BHs>30Msun can reach luminosities>4x10^39 erg s^-1 without exceeding their Eddington limit. It is then important to study variations of evolutionary channels for merging BHs, which might instead form accreting BHs and become ULXs. It was recently shown that massive binaries with mass ratios close to unity and tight orbits can undergo efficient rotational mixing and evolve chemically homogeneously, resulting in a compact BH binary. We study similar systems by computing ~120000 detailed binary models with the MESA code covering a wide range of initial parameters. For initial mass ratios M2/M1~0.1-0.4, primaries >40Msun can evolve chemically homogeneously, remaining compact and forming a BH without undergoing Roche-lobe overflow. The secondary then expands and transfers mass to the BH, initiating a ULX phase. We predict that ~1 out of 10^4 massive stars evolves this way, and that in the local universe 0.13 ULXs per Msun yr^-1 of star-formation rate are observable, with a strong preference for low-metallicities. At metallicities log Z>-3, BH masses in ULXs are limited to 60Msun due to the occurrence of pair-instability supernovae which leave no remnant, resulting in an X-ray luminosity cut-off. At lower metallicities, very massive stars can avoid exploding as pair-instability supernovae and instead form BHs with masses above 130Msun, producing a gap in the ULX luminosity distribution. After the ULX phase, neutron-star-BH binaries that merge in less than a Hubble time are produced with a formation rate <0.2 Gpc^-3 yr^-1. We expect that upcoming X-ray observatories will test these predictions, which together with additional gravitational wave detections will provide strict constraints on the origin of the most massive BHs that can be produced by stars.



قيم البحث

اقرأ أيضاً

137 - Tomaso M. Belloni 2018
In this chapter, I present the main X-ray observational characteristics of black-hole binaries and low magnetic field neutron-star binaries, concentrating on what can be considered similarities or differences, with particular emphasis on their fast-timing behaviour.
Low-metallicity (Z <~ 0.05 Zsun) massive (>~40 Msun) stars might end their life by directly collapsing into massive black holes (BHs, 30 <~ m_BH/Msun <~ 80). More than ~10^5 massive BHs might have been generated via this mechanism in the metal-poor r ing galaxy Cartwheel, during the last ~10^7 yr. We show that such BHs might power most of the ultra-luminous X-ray sources (ULXs) observed in the Cartwheel. We also consider a sample of ULX-rich galaxies and we find a possible anti-correlation between the number of ULXs per galaxy and the metallicity in these galaxies. However, the data are not sufficient to draw any robust conclusions about this anti-correlation, and further studies are required.
The mass transfer in binaries with massive donors and compact companions, when the donors rapidly evolve after their main sequence, is one of the dominant formation channels of merging double stellar-mass black hole binaries. This mass transfer was p reviously postulated to be unstable and was expected to lead to a common envelope event. The common envelope event then would end with either double black hole formation, or with the merger of the two stars. We re-visit the stability of this mass transfer, and find that for a large range of the binary orbital separations this mass transfer is stable. This newly found stability allows us to reconcile the theoretical rate for double black hole binary mergers predicted by population synthesis studies, and the empirical rate obtained by LIGO. Futhermore, the stability of the mass transfer leads to the formation of ultra-luminous X-ray sources. The theoretically predicted formation rates of ultra-luminous X-ray sources powered by a stellar-mass BH, as well as the range of produced X-ray luminosity, can explain the observed bright ultra-luminous X-ray sources.
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. T he intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects which have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. Applying this relation, the BH mass of RE J1034+396 is found to be $4^{+3}_{-2} times 10^6$ $M_{odot}$. The high end of the mass range follows the relationship between the 2$f_0$ frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant $C= 2.37 M_odot$ Hz$^{-1}$ from 21 reverberation-mapped AGN. As suggested by Gierlinski et al., $M_{rm BH}=C/C_{rm M}$, where $C_{rm M}$ is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ULXs and AGN, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the Ultra-Luminous X-ray source M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems (abridged).
267 - Xin-Lin Zhou 2014
Ultra-luminous X-ray sources (ULXs) are off-nuclear X-ray sources in nearby galaxies with X-ray luminosities $geq$ 10$^{39}$ erg s$^{-1}$. The measurement of the black hole (BH) masses of ULXs is a long-standing problem. Here we estimate BH masses in a sample of ULXs with XMM-Newton observations using two different mass indicators, the X-ray photon index and X-ray variability amplitude based on the correlations established for active galactic nuclei (AGNs). The BH masses estimated from the two methods are compared and discussed. We find that some extreme high-luminosity ($L_{rm X} >5times10^{40}$ erg s$^{-1}$) ULXs contain the BH of 10$^{4}$-10$^{5}$ $M_odot$. The results from X-ray variability amplitude are in conflict with those from X-ray photon indices for ULXs with lower luminosities. This suggests that these ULXs generally accrete at rates different from those of X-ray luminous AGNs, or they have different power spectral densities of X-ray variability. We conclude that most of ULXs accrete at super-Eddington rate, thus harbor stellar-mass BH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا