ﻻ يوجد ملخص باللغة العربية
We unravel the stationary properties and the interaction quench dynamics of two bosons, confined in a two-dimensional anisotropic harmonic trap. A transcendental equation is derived giving access to the energy spectrum and revealing the dependence of the energy gaps on the anisotropy parameter. The relation between the two and the one dimensional scattering lengths as well as the Tan contacts is established. The contact, capturing the two-body short range correlations, shows an increasing tendency for a larger anisotropy. Subsequently, the interaction quench dynamics from attractive to repulsive values and vice versa is investigated for various anisotropies. A closed analytical form of the expansion coefficients of the two-body wavefunction, during the time evolution is constructed. The response of the system is studied by means of the time-averaged fidelity, the spectra of the spatial extent of the cloud in each direction and the one-body density. It is found that as the anisotropy increases, the system becomes less perturbed independently of the interactions while for fixed anisotropy quenches towards the non-interacting regime perturb the system in the most efficient manner. Furthermore, we identify that in the tightly confined direction more frequencies are involved in the dynamics stemming from higher-lying excited states.
We study ultra-cold bosons out of equilibrium in a one-dimensional (1D) setting and probe the breaking of integrability and the resulting relaxation at the onset of the crossover from one to three dimensions. In a quantum Newtons cradle type experime
We investigate the crossover of the impurity-induced dynamics, in trapped one-dimensional Bose polarons subject to radio frequency (rf) pulses of varying intensity, from an adiabatic to a diabatic regime. Utilizing adiabatic pulses for either weak re
We study a system of two bosons of one species and a third boson of a second species in a one-dimensional parabolic trap at zero temperature. We assume contact repulsive inter- and intra-species interactions. By means of an exact diagonalization meth
We investigate the quantum dynamics of two bosons, trapped in a two-dimensional harmonic trap, upon quenching arbitrarily their interaction strength thereby covering the entire energy spectrum. Utilizing the exact analytical solution of the stationar
We derive an integral equation describing $N$ two-dimensional bosons with zero-range interactions and solve it for the ground state energy $B_N$ by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond th