ترغب بنشر مسار تعليمي؟ اضغط هنا

Relaxation of Bosons in One Dimension and the Onset of Dimensional Crossover

268   0   0.0 ( 0 )
 نشر من قبل Chen Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study ultra-cold bosons out of equilibrium in a one-dimensional (1D) setting and probe the breaking of integrability and the resulting relaxation at the onset of the crossover from one to three dimensions. In a quantum Newtons cradle type experiment, we excite the atoms to oscillate and collide in an array of 1D tubes and observe the evolution for up to 4.8 seconds (400 oscillations) with minimal heating and loss. By investigating the dynamics of the longitudinal momentum distribution function and the transverse excitation, we observe and quantify a two-stage relaxation process. In the initial stage single-body dephasing reduces the 1D densities, thus rapidly drives the 1D gas out of the quantum degenerate regime. The momentum distribution function asymptotically approaches the distribution of quasimomenta (rapidities), which are conserved in an integrable system. In the subsequent long time evolution, the 1D gas slowly relaxes towards thermal equilibrium through the collisions with transversely excited atoms. Moreover, we tune the dynamics in the dimensional crossover by initializing the evolution with different imprinted longitudinal momenta (energies). The dynamical evolution towards the relaxed state is quantitatively described by a semiclassical molecular dynamics simulation.



قيم البحث

اقرأ أيضاً

We unravel the stationary properties and the interaction quench dynamics of two bosons, confined in a two-dimensional anisotropic harmonic trap. A transcendental equation is derived giving access to the energy spectrum and revealing the dependence of the energy gaps on the anisotropy parameter. The relation between the two and the one dimensional scattering lengths as well as the Tan contacts is established. The contact, capturing the two-body short range correlations, shows an increasing tendency for a larger anisotropy. Subsequently, the interaction quench dynamics from attractive to repulsive values and vice versa is investigated for various anisotropies. A closed analytical form of the expansion coefficients of the two-body wavefunction, during the time evolution is constructed. The response of the system is studied by means of the time-averaged fidelity, the spectra of the spatial extent of the cloud in each direction and the one-body density. It is found that as the anisotropy increases, the system becomes less perturbed independently of the interactions while for fixed anisotropy quenches towards the non-interacting regime perturb the system in the most efficient manner. Furthermore, we identify that in the tightly confined direction more frequencies are involved in the dynamics stemming from higher-lying excited states.
We investigate the crossover of the impurity-induced dynamics, in trapped one-dimensional Bose polarons subject to radio frequency (rf) pulses of varying intensity, from an adiabatic to a diabatic regime. Utilizing adiabatic pulses for either weak re pulsive or attractive impurity-medium interactions, a multitude of polaronic excitations or mode-couplings of the impurity-bath interaction with the collective breathing motion of the bosonic medium are spectrally resolved. We find that for strongly repulsive impurity-bath interactions, a temporal orthogonality catastrophe manifests in resonances in the excitation spectra where impurity coherence vanishes. When two impurities are introduced, impurity-impurity correlations, for either attractive or strong repulsive couplings, induce a spectral shift of the resonances with respect to the single impurity. For a heavy impurity, the polaronic peak is accompanied by a series of equidistant side-band resonances, related to interference of the impurity spin dynamics and the sound waves of the bath. In all cases, we enter the diabatic transfer regime for an increasing bare Rabi frequency of the rf field with a Lorentzian spectral shape featuring a single polaronic resonance. The findings in this work on the effects of external trap, rf pulse and impurity-impurity interaction should have implications for the new generations of cold-atom experiments.
We exemplify the impact of beyond Lee-Huang-Yang (LHY) physics, especially due to intercomponent correlations, in the ground state and the quench dynamics of one-dimensional so-called quantum droplets using an ab-initio nonperturbative approach. It i s found that the droplet Gaussian-shaped configuration arising for intercomponent attractive couplings becomes narrower for stronger intracomponent repulsion and transits towards a flat-top structure either for larger particle numbers or weaker intercomponent attraction. Additionally, a harmonic trap prevents the flat-top formation. At the balance point where mean-field interactions cancel out, we show that quantum fluctuations prevent the collapse of LHY fluids for larger atom numbers and a correlation hole is present in the few particle limit of these fluids as well as for flat-top droplets. Introducing mass-imbalance, droplets experience intercomponent mixing and excitation signatures are identified for larger masses. Monitoring the droplet expansion (breathing motion) upon considering interaction quenches to stronger (weaker) attractions we explicate that beyond LHY correlations result in a reduced velocity (breathing frequency). Strikingly, the droplets feature two-body anti-correlations (correlations) at the same position (longer distances). Our findings pave the way for probing correlation-induced phenomena of droplet dynamics in current ultracold atom experiments.
Isotropic scattering in various spatial dimensions is considered for arbitrary finite-range potentials using non-relativistic effective field theory. With periodic boundary conditions, compactifications from a box to a plane and to a wire, and from a plane to a wire, are considered by matching S-matrix elements. The problem is greatly simplified by regulating the ultraviolet divergences using dimensional regularization with minimal subtraction. General relations among (all) effective-range parameters in the various dimensions are derived, and the dependence of bound states on changing dimensionality are considered. Generally, it is found that compactification binds the two-body system, even if the uncompactified system is unbound. For instance, compactification from a box to a plane gives rise to a bound state with binding momentum given by $ln left({scriptstyle frac{1}{2}}left(3+sqrt{5} right) right)$ in units of the inverse compactification length. This binding momentum is universal in the sense that it does not depend on the two-body interaction in the box. When the two-body system in the box is at unitarity, the S-matrices of the compactified two-body system on the plane and on the wire are given exactly as universal functions of the compactification length
We investigate the quantum dynamics of two bosons, trapped in a two-dimensional harmonic trap, upon quenching arbitrarily their interaction strength thereby covering the entire energy spectrum. Utilizing the exact analytical solution of the stationar y system we derive a closed analytical form of the expansion coefficients of the time-evolved two-body wavefunction, whose dynamics is determined by an expansion over the postquench eigenstates. The emergent dynamical response of the system is analyzed in detail by inspecting several observables such as the fidelity, the reduced one-body densities, the radial probability density of the relative wavefunction in both real and momentum space as well as the Tan contact unveiling the existence of short range two-body correlations. It is found that when the system is initialized in its bound state it is perturbed in the most efficient manner compared to any other initial configuration. Moreover, starting from an interacting ground state the two-boson response is enhanced for quenches towards the non-interacting limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا