ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the gosia code

199   0   0.0 ( 0 )
 نشر من قبل Liam Gaffney Dr.
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross sections and a lack of complimentary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, {rmfamily textsc{gosia}}.



قيم البحث

اقرأ أيضاً

218 - Michael A. Famiano 2019
Nuclear masses are the most fundamental of all nuclear properties, yet they can provide a wealth of knowledge, including information on astrophysical sites, constraints on existing theory, and fundamental symmetries. In nearly all applications, it is necessary to measure nuclear masses with very high precision. As mass measurements push to more short-lived and more massive nuclei, the practical constraints on mass measurement techniques become more exacting. Various techniques used to measure nuclear masses, including their advantages and disadvantages are described. Descriptions of some of the world facilities at which the nuclear mass measurements are performed are given, and brief summaries of planned facilities are presented. Future directions are mentioned, and conclusions are presented which provide a possible outlook and emphasis on upcoming plans for nuclear mass measurements at existing facilities, those under construction, and those being planned.
The $B(E2;0^+to2^+)$ value in $^{68}$Ni has been measured using Coulomb excitation at safe energies. The $^{68}$Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted $gamma$ rays were detected by the MINIBAL L detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.8$^{+1.2}_{-1.0}$ 10$^2$ e$^2$fm$^4$ is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low $0^+to2^+$ transition probability.
135 - Kate L. Jones 2013
Transfer reactions are a powerful probe of the properties of atomic nuclei. When used in inverse kinematics with radioactive ion beams they can provide detailed information on the structure of exotic nuclei and can inform nucleosynthesis calculations . There are a number of groups around the world who use these reactions, usually with particle detection in large silicon arrays. Sometimes these arrays are coupled to gamma-ray detectors, and occasionally smaller arrays of silicon detectors are mounted within a solenoid magnet. Modern techniques using transfer reactions in inverse kinematics are covered, with specific examples, many from measurements made with beams from the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory.
There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix elements have been determined for transitions in $^{222,228}$Ra nuclei using the method of sub-barrier, multi-step Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of $E$3 matrix elements for different nuclear transitions is explained by describing $^{222}$Ra as pear-shaped with stable octupole deformation, while $^{228}$Ra behaves like an octupole vibrator.
The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molec ular Dynamics model(CoMD), which demonstrated that the <N/Z> of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا