ﻻ يوجد ملخص باللغة العربية
We consider models of growing multi-level systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, worst hierarchy level oscillates quasi log-periodically. In the PT model the occupations of the first two hierarchy levels increase linearly but worse hierarchy levels either do not emerge at all or appear only by chance in early stage of system evolution to further stop growing at all. The results allow to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.
We study quantum many-body systems with a global U(1) conservation law, focusing on a theory of $N$ interacting fermions with charge conservation, or $N$ interacting spins with one conserved component of total spin. We define an effective operator si
We investigate how structural relaxation in mixtures with strong dynamical asymmetry is affected by the microscopic dynamics. Brownian and Newtonian dynamics simulations of dense mixtures of fast and slow hard spheres reveal a striking trend reversal
Hierarchical networks are prevalent in nature and society, corresponding to groups of actors - animals, humans or even robots - organised according to a pyramidal structure with decision makers at the top and followers at the bottom. While this pheno
Communication networks show the small-world property of short paths, but the spreading dynamics in them turns out slow. We follow the time evolution of information propagation through communication networks by using the SI model with empirical data o
We investigate dynamical self-friction, the process by which material that is stripped from a subhalo torques its remaining bound remnant, which causes it to lose orbital angular momentum. By running idealized simulations of a subhalo orbiting within