ﻻ يوجد ملخص باللغة العربية
A simplicial set is said to be non-singular if the representing map of each non-degenerate simplex is degreewise injective. The inclusion into the category of simplicial sets, of the full subcategory whose objects are the non-singular simplicial sets, admits a left adjoint functor called desingularization. In this paper, we provide an iterative description of desingularization that is useful for theoretical purposes as well as for doing calculations.
The Barratt nerve, denoted $B$, is the endofunctor that takes a simplicial set to the nerve of the poset of its non-degenerate simplices. The ordered simplicial complex $BSd, X$, namely the Barratt nerve of the Kan subdivision $Sd, X$, is a triangula
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model
Hepworth, Willerton, Leinster and Shulman introduced the magnitude homology groups for enriched categories, in particular, for metric spaces. The purpose of this paper is to describe the magnitude homology group of a metric space in terms of order co
Unstable operations in a generalized cohomology theory E give rise to a functor from the category of algebras over E to itself which is a colimit of representable functors and a comonoid with respect to composition of such functors. In this paper I s
Let $G$ be a Lie group and $GtoAut(G)$ be the canonical group homomorphism induced by the adjoint action of a group on itself. We give an explicit description of a 1-1 correspondence between Morita equivalence classes of, on the one hand, principal 2