ﻻ يوجد ملخص باللغة العربية
The Barratt nerve, denoted $B$, is the endofunctor that takes a simplicial set to the nerve of the poset of its non-degenerate simplices. The ordered simplicial complex $BSd, X$, namely the Barratt nerve of the Kan subdivision $Sd, X$, is a triangulation of the original simplicial set $X$ in the sense that there is a natural map $BSd, Xto X$ whose geometric realization is homotopic to some homeomorphism. This is a refinement to the result that any simplicial set can be triangulated. A simplicial set is said to be regular if each of its non-degenerate simplices is embedded along its $n$-th face. That $BSd, Xto X$ is a triangulation of $X$ is a consequence of the fact that the Kan subdivision makes simplicial sets regular and that $BX$ is a triangulation of $X$ whenever $X$ is regular. In this paper, we argue that $B$, interpreted as a functor from regular to non-singular simplicial sets, is not just any triangulation, but in fact the best. We mean this in the sense that $B$ is the left Kan extension of barycentric subdivision along the Yoneda embedding.
A simplicial set is said to be non-singular if its non-degenerate simplices are embedded. Let $sSet$ denote the category of simplicial sets. We prove that the full subcategory $nsSet$ whose objects are the non-singular simplicial sets admits a model
This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familia
We construct a combinatorial model of an A-infinity-operad which acts simplicially on the cobar resolution (not just its total space) of a simplicial set with respect to a ring R.
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model
Hepworth, Willerton, Leinster and Shulman introduced the magnitude homology groups for enriched categories, in particular, for metric spaces. The purpose of this paper is to describe the magnitude homology group of a metric space in terms of order co