ﻻ يوجد ملخص باللغة العربية
In subdomains of $mathbb{R}^{d}$ we consider uniformly elliptic equations $Hbig(v( x),D v( x),D^{2}v( x), xbig)=0$ with the growth of $H$ with respect to $|Dv|$ controlled by the product of a function from $L_{d}$ times $|Dv|$. The dependence of $H$ on $x$ is assumed to be of BMO type. Among other things we prove that there exists $d_{0}in(d/2,d)$ such that for any $pin(d_{0},d)$ the equation with prescribed continuous boundary data has a solution in class $W^{2}_{p,text{loc}}$. Our results are new even if $H$ is linear.
We present some results concerning the solvability of linear elliptic equations in bounded domains with the main coefficients almost in VMO, the drift and the free terms in Morrey classes containing $L_{d}$, and bounded zeroth order coefficient. We p
In this note, we obtain a version of Aleksandrovs maximum principle when the drift coefficients are in Morrey spaces, which contains $L_d$, and when the free term is in $L_p$ for some $p<d$.
We consider elliptic equations with operators $L=a^{ij}D_{ij}+b^{i}D_{i}-c$ with $a$ being almost in VMO, $bin L_{d}$ and $cin L_{q}$, $cgeq0$, $d>qgeq d/2$. We prove the solvability of $Lu=fin L_{p}$ in bounded $C^{1,1}$-domains, $1<pleq q$, and of
In this paper we deal with the heat equation with drift in $L_{d+1}$. Basically, we prove that, if the free term is in $L_{q}$ with high enough $q$, then the equation is uniquely solvable in a rather unusual class of functions such that $partial_{t}u, D^{2}uin L_{p}$ with $p<d+1$ and $Duin L_{q}$.
Under structural conditions which are almost optimal, we derive a quantitative version of boundary estimate then prove existence of solutions to Dirichlet problem for a class of fully nonlinear elliptic equations on Hermitian manifolds.