ﻻ يوجد ملخص باللغة العربية
In this paper we deal with the heat equation with drift in $L_{d+1}$. Basically, we prove that, if the free term is in $L_{q}$ with high enough $q$, then the equation is uniquely solvable in a rather unusual class of functions such that $partial_{t}u, D^{2}uin L_{p}$ with $p<d+1$ and $Duin L_{q}$.
This paper is a natural continuation of cite{Kr_20_2} and cite{Kr_21_1} where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(ma
In subdomains of $mathbb{R}^{d}$ we consider uniformly elliptic equations $Hbig(v( x),D v( x),D^{2}v( x), xbig)=0$ with the growth of $H$ with respect to $|Dv|$ controlled by the product of a function from $L_{d}$ times $|Dv|$. The dependence of $H$
This paper is a natural continuation of cite{Kr_20_2}, where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$.
We prove the solvability of It^o stochastic equations with uniformly nondegenerate, bounded, measurable diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Actually, the powers of summability of the drift in $x$ and $t$ could be different. Our results
In this note, we obtain a version of Aleksandrovs maximum principle when the drift coefficients are in Morrey spaces, which contains $L_d$, and when the free term is in $L_p$ for some $p<d$.