ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularity of fully non-linear elliptic equations on Hermitian manifolds. III

95   0   0.0 ( 0 )
 نشر من قبل Rirong Yuan
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Rirong Yuan




اسأل ChatGPT حول البحث

Under structural conditions which are almost optimal, we derive a quantitative version of boundary estimate then prove existence of solutions to Dirichlet problem for a class of fully nonlinear elliptic equations on Hermitian manifolds.



قيم البحث

اقرأ أيضاً

87 - Bo Guan , Xiaolan Nie 2021
We derive a priori second order estimates for fully nonlinear elliptic equations which depend on the gradients of solutions in critical ways on Hermitian manifolds. The global estimates we obtained apply to an equation arising from a conjecture by Ga uduchon which extends the Calabi conjecture; this was one of the original motivations to this work. We were also motivated by the fact that there had been increasing interests in fully nonlinear pdes from complex geometry in recent years, and aimed to develop general methods to cover as wide a class of equations as possible.
We consider nonlinear fourth order elliptic equations of double divergence type. We show that for a certain class of equations where the nonlinearity is in the Hessian, solutions that are C^{2,alpha} enjoy interior estimates on all derivatives.
We investigate existence and uniqueness of bounded solutions of parabolic equations with unbounded coefficients in $Mtimes mathbb R_+$, where $M$ is a complete noncompact Riemannian manifold. Under specific assumptions, we establish existence of solu tions satisfying prescribed conditions at infinity, depending on the direction along which infinity is approached. Moreover, the large-time behavior of such solutions is studied. We consider also elliptic equations on $M$ with similar conditions at infinity.
We investigate the well-posedness of the fast diffusion equation (FDE) in a wide class of noncompact Riemannian manifolds. Existence and uniqueness of solutions for globally integrable initial data was established in [5]. However, in the Euclidean sp ace, it is known from Herrero and Pierre [20] that the Cauchy problem associated with the FDE is well posed for initial data that are merely in $ L^1_{mathrm{loc}} $. We establish here that such data still give rise to global solutions on general Riemannian manifolds. If, in addition, the radial Ricci curvature satisfies a suitable pointwise bound from below (possibly diverging to $-infty$ at spatial infinity), we prove that also uniqueness holds, for the same type of data, in the class of strong solutions. Besides, under the further assumption that the initial datum is in $L^2_{mathrm{loc}}$ and nonnegative, a minimal solution is shown to exist, and we are able to establish uniqueness of purely (nonnegative) distributional solutions, which to our knowledge was not known before even in the Euclidean space. The required curvature bound is in fact sharp, since on model manifolds it turns out to be equivalent to stochastic completeness, and it was shown in [13] that uniqueness for the FDE fails even in the class of bounded solutions on manifolds that are not stochastically complete. Qualitatively this amounts to asking that the curvature diverges at most quadratically at infinity. A crucial ingredient of the uniqueness result is the proof of nonexistence of distributional subsolutions to certain semilinear elliptic equations with power nonlinearities, of independent interest.
185 - N.V. Krylov 2021
We present some results concerning the solvability of linear elliptic equations in bounded domains with the main coefficients almost in VMO, the drift and the free terms in Morrey classes containing $L_{d}$, and bounded zeroth order coefficient. We p rove that the second-order derivatives of solutions are in a local Morrey class containing $W^{2}_{p,loc}$. Actually, the exposition is given for fully nonlinear equations and encompasses the above mentioned results, which are new even if the main part of the equation is just the Laplacian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا