ترغب بنشر مسار تعليمي؟ اضغط هنا

The MUSE Hubble Ultra Deep Field Survey XI. Constraining the low-mass end of the stellar mass - star formation rate relation at $z<1$

129   0   0.0 ( 0 )
 نشر من قبل Leindert A. Boogaard
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Star-forming galaxies have been found to follow a relatively tight relation between stellar mass ($M_{*}$) and star formation rate (SFR), dubbed the `star formation sequence. A turnover in the sequence has been observed, where galaxies with $M_{*} < 10^{10} {rm M}_{odot}$ follow a steeper relation than their higher mass counterparts, suggesting that the low-mass slope is (nearly) linear. In this paper, we characterise the properties of the low-mass end of the star formation sequence between $7 leq log M_{*}[{rm M}_{odot}] leq 10.5$ at redshift $0.11 < z < 0.91$. We use the deepest MUSE observations of the Hubble Ultra Deep Field and the Hubble Deep Field South to construct a sample of 179 star-forming galaxies with high signal-to-noise emission lines. Dust-corrected SFRs are determined from H$beta$ $lambda 4861$ and H$alpha$ $lambda 6563$. We model the star formation sequence with a Gaussian distribution around a hyperplane between $log M_{*}$, $log {rm SFR}$, and $log (1+z)$, to simultaneously constrain the slope, redshift evolution, and intrinsic scatter. We find a sub-linear slope for the low-mass regime where $log {rm SFR}[{rm M}_{odot}/{rm yr}] = 0.83^{+0.07}_{-0.06} log M_{*}[{rm M}_{odot}] + 1.74^{+0.66}_{-0.68} log (1+z)$, increasing with redshift. We recover an intrinsic scatter in the relation of $sigma_{rm intr} = 0.44^{+0.05}_{-0.04}$ dex, larger than typically found at higher masses. As both hydrodynamical simulations and (semi-)analytical models typically favour a steeper slope in the low-mass regime, our results provide new constraints on the feedback processes which operate preferentially in low-mass halos.



قيم البحث

اقرأ أيضاً

Utilizing spectroscopic observations taken for the VIMOS Ultra-Deep Survey (VUDS), new observations from Keck/DEIMOS, and publicly available observations of large samples of star-forming galaxies, we report here on the relationship between the star f ormation rate (SFR) and the local environment ($delta_{gal}$) of galaxies in the early universe ($2<z<5$). Unlike what is observed at lower redshifts ($z<2$), we observe a definite, nearly monotonic increase in the average SFR with increasing galaxy overdensity over more than an order of magnitude in $delta_{gal}$. The robustness of this trend is quantified by accounting for both uncertainties in our measurements and galaxy populations that are either underrepresented or not present in our sample finding that the trend remains significant under all circumstances. This trend appears to be primarily driven by the fractional increase of galaxies in high density environments that are more massive in their stellar content and are forming stars at a higher rate than their less massive counterparts. We find that, even after stellar mass effects are accounted for, there remains a weak but significant SFR-$delta_{gal}$ trend in our sample implying that additional environmentally-related processes are helping to drive this trend. We also find clear evidence that the average SFR of galaxies in the densest environments increases with increasing redshift. These results lend themselves to a picture in which massive gas-rich galaxies coalesce into proto-cluster environments at $zsim3$, interact with other galaxies or with a forming large-scale medium, subsequently using or losing most of their gas in the process, and begin to seed the nascent red sequence that is present in clusters at slightly lower redshifts.
We present a new measurement of the gas-phase mass-metallicity relation (MZR), and its dependence on star formation rates (SFRs) at 1.3 < z < 2.3. Our sample comprises 1056 galaxies with a mean redshift of z = 1.9, identified from the Hubble Space Te lescope Wide Field Camera 3 (WFC3) grism spectroscopy in the Cosmic Assembly Near-Infrared Deep Extragalactic Survey (CANDELS) and the WFC3 Infrared Spectroscopic Parallel Survey (WISP). This sample is four times larger than previous metallicity surveys at z ~ 2, and reaches an order of magnitude lower in stellar mass (10^8 M_sun). Using stacked spectra, we find that the MZR evolves by 0.3 dex relative to z ~ 0.1. Additionally, we identify a subset of 49 galaxies with high signal-to-noise (SNR) spectra and redshifts between 1.3 < z < 1.5, where H-alpha emission is observed along with [OIII] and [OII]. With accurate measurements of SFR in these objects, we confirm the existence of a mass-metallicity-SFR (M-Z-SFR) relation at high redshifts. These galaxies show systematic differences from the local M-Z-SFR relation, which vary depending on the adopted measurement of the local relation. However, it remains difficult to ascertain whether these differences could be due to redshift evolution, as the local M-Z-SFR relation is poorly constrained at the masses and SFRs of our sample. Lastly, we reproduced our sample selection in the IllustrisTNG hydrodynamical simulation, demonstrating that our line flux limit lowers the normalization of the simulated MZR by 0.2 dex. We show that the M-Z-SFR relation in IllustrisTNG has an SFR dependence that is too steep by a factor of around three.
We present an analysis of $sim$1500 H160-selected photometric galaxies detected to a limiting magnitude of 27.8 in the HUDF, using imaging from the HST WFC3/IR camera in combination with archival UV, optical, and NIR imaging. We fit photometric redsh ifts and stellar population estimates for all galaxies with well-determined Spitzer IRAC fluxes, allowing for the determination of the cumulative mass function within the range $1<z<6$. By selecting samples of galaxies at a constant cumulative number density, we explore the co-evolution of stellar masses and star formation rates from z$sim$6. We find a steady increase in the SFRs of galaxies at constant number density from z$sim$6 to z$sim$3. The peak epoch of star formation is found to shift to later times for galaxies with increasing number densities, in agreement with the expectations from cosmic downsizing. The observed SFRs can fully account for the mass growth to z$sim$2 amongst galaxies with cumulative number densities greater than 10$^{-3.5}$ Mpc$^{-3}$. For galaxies with a lower constant number density we find the observed stellar masses are $sim$3 times greater than that which may be accounted for by the observed star formation alone at late times, implying that growth from mergers plays an important role at $z<2$. We additionally observe a decreasing sSFR, equivalent to approximately one order of magnitude, from z$sim$6 to z$sim$2 amongst galaxies with number densities less than 10$^{-3.5}$ Mpc$^{-3}$ along with significant evidence that at any redshift the sSFR is higher for galaxies at higher number density. The combination of these findings can qualitatively explain the previous findings of a sSFR plateau at high redshift. Tracing the evolution of the fraction of quiescent galaxies for samples matched in cumulative number density over this redshift range, we find no unambiguous examples of quiescent galaxies at $z>4$.
We investigate the specific angular momentum (sAM) $ j(<r)$ profiles of intermediate redshift ($0.4<z<1.4$) star-forming galaxies (SFGs) in the relatively unexplored regime of low masses (down to $M_starsim 10^8$M$_{odot}$) and small sizes (down to $ R_{rm e}sim 1.5$ kpc) and characterize the sAM scaling relation and its redshift evolution. We have developed a 3D methodology to constrain sAM profiles of the star-forming gas using a forward modeling approach with galpak{} that incorporates the effects of beam smearing, yielding the intrinsic morpho-kinematic properties even with limited spatial resolution data. Using mock observations from the TNG50 simulation, we find that our 3D methodology robustly recovers the SFR-weighted $j(<r)$ profiles down to low effective signal-to-noise ratio (SNR) of $gtrapprox3$. We apply our methodology blindly to a sample of 494 OII{}-selected SFGs in the MUSE Ultra Deep Field (UDF) 9~arcmin$^2$ mosaic data, covering the unexplored $8<log M_*/$M$_{odot}<9$ mass range. We find that the (SFR-weighted) sAM relation follows $jpropto M_star^{alpha}$ with an index $alpha$ varying from $alpha=0.3$ to $alpha=0.5$, from $log M_star/$M$_{odot}=8$ to $log M_*/$M$_{odot}=10.5$. The UDF sample supports a redshift evolution consistent with the $(1+z)^{-0.5}$ expectation from a Universe in expansion. The scatter of the sAM sequence is a strong function of the dynamical state with $log j|_{M_*}propto 0.65 times log(V_{rm max}/sigma)$ where $sigma$ is the velocity dispersion at $2 R_{rm e}$. In TNG50, SFGs also form a $j-M_{star}-(V/sigma)$ plane but correlates more with galaxy size than with morphological parameters. Our results suggest that SFGs might experience a dynamical transformation before their morphological transformation to becoming passive via either merging or secular evolution.
We present spatially resolved stellar kinematic maps, for the first time, for a sample of 17 intermediate redshift galaxies (0.2 < z < 0.8). We used deep MUSE/VLT integral field spectroscopic observations in the Hubble Deep Field South (HDFS) and Hub ble Ultra Deep Field (HUDF), resulting from ~30h integration time per field, each covering 1x1 field of view, with ~0.65 spatial resolution. We selected all galaxies brighter than 25mag in the I band and for which the stellar continuum is detected over an area that is at least two times larger than the spatial resolution. The resulting sample contains mostly late-type disk, main-sequence star-forming galaxies with 10^8.5 - 10^10.5 Msun. Using a full-spectrum fitting technique, we derive two-dimensional maps of the stellar and gas kinematics, including the radial velocity V and velocity dispersion sigma. We find that most galaxies in the sample are consistent with having rotating stellar disks with roughly constant velocity dispersions and that the Vrms=sqrt{V^2+sigma^2} of the gas and stars, a scaling proxy for the galaxy gravitational potential, compare well to each other. These spatially resolved observations of intermediate redshift galaxies suggest that the regular stellar kinematics of disk galaxies that is observed in the local Universe was already in place 4 - 7 Gyr ago and that their gas kinematics traces the gravitational potential of the galaxy, thus is not dominated by shocks and turbulent motions. Finally, we build dynamical axisymmetric Jeans models constrained by the derived stellar kinematics for two specific galaxies and derive their dynamical masses. These are in good agreement (within 25%) with those derived from simple exponential disk models based on the gas kinematics. The obtained mass-to-light ratios hint towards dark matter dominated systems within a few effective radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا