ترغب بنشر مسار تعليمي؟ اضغط هنا

Mutation timing in a spatial model of evolution

74   0   0.0 ( 0 )
 نشر من قبل Jasmine Foo
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by models of cancer formation in which cells need to acquire $k$ mutations to become cancerous, we consider a spatial population model in which the population is represented by the $d$-dimensional torus of side length $L$. Initially, no sites have mutations, but sites with $i-1$ mutations acquire an $i$th mutation at rate $mu_i$ per unit area. Mutations spread to neighboring sites at rate $alpha$, so that $t$ time units after a mutation, the region of individuals that have acquired the mutation will be a ball of radius $alpha t$. We calculate, for some ranges of the parameter values, the asymptotic distribution of the time required for some individual to acquire $k$ mutations. Our results, which build on previous work of Durrett, Foo, and Leder, are essentially complete when $k = 2$ and when $mu_i = mu$ for all $i$.



قيم البحث

اقرأ أيضاً

We consider a spatial model of cancer in which cells are points on the $d$-dimensional torus $mathcal{T}=[0,L]^d$, and each cell with $k-1$ mutations acquires a $k$th mutation at rate $mu_k$. We will assume that the mutation rates $mu_k$ are increasi ng, and we find the asymptotic waiting time for the first cell to acquire $k$ mutations as the torus volume tends to infinity. This paper generalizes results on waiting for $kgeq 3$ mutations by Foo, Leder, and Schweinsberg, who considered the case in which all of the mutation rates $mu_k$ were the same. In addition, we find the limiting distribution of the spatial distances between mutations for certain values of the mutation rates.
We consider the mutation--selection differential equation with pairwise interaction (or, equivalently, the diploid mutation--selection equation) and establish the corresponding ancestral process, which is a random tree and a variant of the ancestral selection graph. The formal relation to the forward model is given via duality. To make the tree tractable, we prune branches upon mutations, thus reducing it to its informative parts. The hierarchies inherent in the tree are encoded systematically via tripod trees with weighted leaves; this leads to the stratified ancestral selection graph. The latter also satisfies a duality relation with the mutation--selection equation. Each of the dualities provides a stochastic representation of the solution of the differential equation. This allows us to connect the equilibria and their bifurcations to the long-term behaviour of the ancestral process. Furthermore, with the help of the stratified ancestral selection graph, we obtain explicit results about the ancestral type distribution in the case of unidirectional mutation.
Using graphical methods based on a `lookdown and pruned version of the {em ancestral selection graph}, we obtain a representation of the type distribution of the ancestor in a two-type Wright-Fisher population with mutation and selection, conditional on the overall type frequency in the old population. This extends results from Lenz, Kluth, Baake, and Wakolbinger (Theor. Pop. Biol., 103 (2015), 27-37) to the case of heavy-tailed offspring, directed by a reproduction measure $Lambda$. The representation is in terms of the equilibrium tail probabilities of the line-counting process $L$ of the graph. We identify a strong pathwise Siegmund dual of $L$, and characterise the equilibrium tail probabilities of $L$ in terms of hitting probabilities of the dual process.
Microbial communities are ubiquitous in nature and come in a multitude of forms, ranging from communities dominated by a handful of species to communities containing a wide variety of metabolically distinct organisms. This huge range in diversity is not a curiosity - microbial diversity has been linked to outcomes of substantial ecological and medical importance. However, the mechanisms underlying microbial diversity are still under debate, as simple mathematical models only permit as many species to coexist as there are resources. A plethora of mechanisms have been proposed to explain the origins of microbial diversity, but many of these analyses omit a key property of real microbial ecosystems: the propensity of the microbes themselves to change their growth properties within and across generations. In order to explore the impact of this key property on microbial diversity, we expand upon a recently developed model of microbial diversity in fluctuating environments. We implement changes in growth strategy in two distinct ways. First, we consider the regulation of a cells enzyme levels within short, ecological times, and second we consider evolutionary changes driven by mutations across generations. Interestingly, we find that these two types of microbial responses to the environment can have drastically different outcomes. Enzyme regulation may collapse diversity over long enough times while, conversely, strategy-randomizing mutations can produce a rich-get-poorer effect that promotes diversity. This work makes explicit, using a simple serial-dilutions framework, the conflicting ways that microbial adaptation and evolution can affect community diversity.
We reconsider the deterministic haploid mutation-selection equation with two types. This is an ordinary differential equation that describes the type distribution (forward in time) in a population of infinite size. This paper establishes ancestral (r andom) structures inherent in this deterministic model. In a first step, we obtain a representation of the deterministic equations solution (and, in particular, of its equilibrium) in terms of an ancestral process called the killed ancestral selection graph. This representation allows one to understand the bifurcations related to the error threshold phenomenon from a genealogical point of view. Next, we characterise the ancestral type distribution by means of the pruned lookdown ancestral selection graph and study its properties at equilibrium. We also provide an alternative characterisation in terms of a piecewise-deterministic Markov process. Throughout, emphasis is on the underlying dualities as well as on explicit results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا