ترغب بنشر مسار تعليمي؟ اضغط هنا

Enzyme regulation and mutation in a model serial dilution ecosystem

211   0   0.0 ( 0 )
 نشر من قبل Amir Erez
 تاريخ النشر 2021
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microbial communities are ubiquitous in nature and come in a multitude of forms, ranging from communities dominated by a handful of species to communities containing a wide variety of metabolically distinct organisms. This huge range in diversity is not a curiosity - microbial diversity has been linked to outcomes of substantial ecological and medical importance. However, the mechanisms underlying microbial diversity are still under debate, as simple mathematical models only permit as many species to coexist as there are resources. A plethora of mechanisms have been proposed to explain the origins of microbial diversity, but many of these analyses omit a key property of real microbial ecosystems: the propensity of the microbes themselves to change their growth properties within and across generations. In order to explore the impact of this key property on microbial diversity, we expand upon a recently developed model of microbial diversity in fluctuating environments. We implement changes in growth strategy in two distinct ways. First, we consider the regulation of a cells enzyme levels within short, ecological times, and second we consider evolutionary changes driven by mutations across generations. Interestingly, we find that these two types of microbial responses to the environment can have drastically different outcomes. Enzyme regulation may collapse diversity over long enough times while, conversely, strategy-randomizing mutations can produce a rich-get-poorer effect that promotes diversity. This work makes explicit, using a simple serial-dilutions framework, the conflicting ways that microbial adaptation and evolution can affect community diversity.



قيم البحث

اقرأ أيضاً

We consider a spatial model of cancer in which cells are points on the $d$-dimensional torus $mathcal{T}=[0,L]^d$, and each cell with $k-1$ mutations acquires a $k$th mutation at rate $mu_k$. We will assume that the mutation rates $mu_k$ are increasi ng, and we find the asymptotic waiting time for the first cell to acquire $k$ mutations as the torus volume tends to infinity. This paper generalizes results on waiting for $kgeq 3$ mutations by Foo, Leder, and Schweinsberg, who considered the case in which all of the mutation rates $mu_k$ were the same. In addition, we find the limiting distribution of the spatial distances between mutations for certain values of the mutation rates.
Motivated by models of cancer formation in which cells need to acquire $k$ mutations to become cancerous, we consider a spatial population model in which the population is represented by the $d$-dimensional torus of side length $L$. Initially, no sit es have mutations, but sites with $i-1$ mutations acquire an $i$th mutation at rate $mu_i$ per unit area. Mutations spread to neighboring sites at rate $alpha$, so that $t$ time units after a mutation, the region of individuals that have acquired the mutation will be a ball of radius $alpha t$. We calculate, for some ranges of the parameter values, the asymptotic distribution of the time required for some individual to acquire $k$ mutations. Our results, which build on previous work of Durrett, Foo, and Leder, are essentially complete when $k = 2$ and when $mu_i = mu$ for all $i$.
In multi-resolution simulations, different system components are simultaneously modelled at different levels of resolution, these being smoothly coupled together. In the case of enzyme systems, computationally expensive atomistic detail is needed in the active site to capture the chemistry of substrate binding. Global properties of the rest of the protein also play an essential role, determining the structure and fluctuations of the binding site; however, these can be modelled on a coarser level. Similarly, in the most computationally efficient scheme only the solvent hydrating the active site requires atomistic detail. We present a methodology to couple atomistic and coarse-grained protein models, while solvating the atomistic part of the protein in atomistic water. This allows a free choice of which protein and solvent degrees of freedom to include atomistically, without loss of accuracy in the atomistic description. This multi-resolution methodology can successfully model stable ligand binding, and we further confirm its validity via an exploration of system properties relevant to enzymatic function. In addition to a computational speedup, such an approach can allow the identification of the essential degrees of freedom playing a role in a given process, potentially yielding new insights into biomolecular function.
Current models for the folding of the human genome see a hierarchy stretching down from chromosome territories, through A/B compartments and TADs (topologically-associating domains), to contact domains stabilized by cohesin and CTCF. However, molecul ar mechanisms underlying this folding, and the way folding affects transcriptional activity, remain obscure. Here we review physical principles driving proteins bound to long polymers into clusters surrounded by loops, and present a parsimonious yet comprehensive model for the way the organization determines function. We argue that clusters of active RNA polymerases and their transcription factors are major architectural features; then, contact domains, TADs, and compartments just reflect one or more loops and clusters. We suggest tethering a gene close to a cluster containing appropriate factors -- a transcription factory -- increases the firing frequency, and offer solutions to many current puzzles concerning the actions of enhancers, super-enhancers, boundaries, and eQTLs (expression quantitative trait loci). As a result, the activity of any gene is directly influenced by the activity of other transcription units around it in 3D space, and this is supported by Brownian-dynamics simulations of transcription factors binding to cognate sites on long polymers.
116 - J. F. Fontanari , M. Serva 2012
Compartmentalization of self-replicating molecules (templates) in protocells is a necessary step towards the evolution of modern cells. However, coexistence between distinct template types inside a protocell can be achieved only if there is a selecti ve pressure favoring protocells with a mixed template composition. Here we study analytically a group selection model for the coexistence between two template types using the diffusion approximation of population genetics. The model combines competition at the template and protocell levels as well as genetic drift inside protocells. At the steady state, we find a continuous phase transition separating the coexistence and segregation regimes, with the order parameter vanishing linearly with the distance to the critical point. In addition, we derive explicit analytical expressions for the critical steady-state probability density of protocell compositions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا