ﻻ يوجد ملخص باللغة العربية
Interlayer excitons (IXs) possess a much longer lifetime than intralayer excitons due to the spatial separation of the electrons and holes; hence, they have been pursued to create exciton condensates for decades. The recent emergence of two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), and of their van der Waals heterostructures (HSs), in which two different 2D materials are layered together, has created new opportunities to study IXs. Here we present the observation of IX gases within two stacked structures consisting of hBN/WSe$_2$/hBN/p: WSe$_2$/hBN. The IX energy of the two different structures differed by 82 meV due to the different thickness of the hBN spacer layer between the TMD layers. We demonstrate that the lifetime of the IXs is shortened when the temperature and the pump power increase. We attribute this nonlinear behavior to an Auger process.
Monolayer WSe$_2$ hosts a series of exciton Rydberg states denoted by the principal quantum number n = 1, 2, 3, etc. While most research focuses on their absorption properties, their optical emission is also important but much less studied. Here we m
Many of the fundamental optical and electronic properties of atomically thin transition metal dichalcogenides are dominated by strong Coulomb interactions between electrons and holes, forming tightly bound atom-like excitons. Here, we directly trace
Interlayer excitons in layered materials constitute a novel platform to study many-body phenomena arising from long-range interactions between quantum particles. The ability to localise individual interlayer excitons in potential energy traps is a ke
The Hall effect can be extended by inducing a temperature gradient in lieu of electric field that is known as the Nernst (-Ettingshausen) effect. The recently discovered spin Nernst effect in heavy metals continues to enrich the picture of Nernst eff
Based on emph{ab initio} theoretical calculations of the optical spectra of vertical heterostructures of MoSe$_2$ (or MoS$_2$) and WSe$_2$ sheets, we reveal two spin-orbit-split Rydberg series of excitonic states below the textsl{A} excitons of MoSe$