ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-photoluminescence of exciton Rydberg states in monolayer WSe$_2$

123   0   0.0 ( 0 )
 نشر من قبل Liu Erfu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monolayer WSe$_2$ hosts a series of exciton Rydberg states denoted by the principal quantum number n = 1, 2, 3, etc. While most research focuses on their absorption properties, their optical emission is also important but much less studied. Here we measure the photoluminescence from the 1s - 5s exciton Rydberg states in ultraclean monolayer WSe$_2$ encapsulated by boron nitride under magnetic fields from -31 T to 31 T. The exciton Rydberg states exhibit similar Zeeman shifts but distinct diamagnetic shifts from each other. From their luminescence spectra, Zeeman and diamagnetic shifts, we deduce the binding energies, g-factors and radii of the 1s - 4s exciton states. Our results are consistent with theoretical predictions and results from prior magneto-reflection experiments.



قيم البحث

اقرأ أيضاً

Interlayer excitons (IXs) possess a much longer lifetime than intralayer excitons due to the spatial separation of the electrons and holes; hence, they have been pursued to create exciton condensates for decades. The recent emergence of two-dimension al (2D) materials, such as transition metal dichalcogenides (TMDs), and of their van der Waals heterostructures (HSs), in which two different 2D materials are layered together, has created new opportunities to study IXs. Here we present the observation of IX gases within two stacked structures consisting of hBN/WSe$_2$/hBN/p: WSe$_2$/hBN. The IX energy of the two different structures differed by 82 meV due to the different thickness of the hBN spacer layer between the TMD layers. We demonstrate that the lifetime of the IXs is shortened when the temperature and the pump power increase. We attribute this nonlinear behavior to an Auger process.
We report 65 tesla magneto-absorption spectroscopy of exciton Rydberg states in the archetypal monolayer semiconductor WSe$_2$. The strongly field-dependent and distinct energy shifts of the 2s, 3s, and 4s excited neutral excitons permits their unamb iguous identification and allows for quantitative comparison with leading theoretical models. Both the sizes (via low-field diamagnetic shifts) and the energies of the $ns$ exciton states agree remarkably well with detailed numerical simulations using the non-hydrogenic screened Keldysh potential for 2D semiconductors. Moreover, at the highest magnetic fields the nearly-linear diamagnetic shifts of the weakly-bound 3s and 4s excitons provide a direct experimental measure of the excitons reduced mass, $m_r = 0.20 pm 0.01~m_0$.
We report the observation and gate manipulation of intrinsic dark trions in monolayer WSe$_2$. By using ultraclean WSe$_2$ devices encapsulated by boron nitride, we directly resolve the weak photoluminescence of dark trions. The dark trions can be tu ned continuously between negative and positive charged trions with electrostatic gating. We also reveal their spin triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under magnetic field. The dark trions exhibit large binding energy (14-16 meV). Their lifetime (~1.3 ns) is two orders of magnitude longer than the bright trion lifetime (~10 ps) and can be tuned between 0.4 to 1.3 ns by electrostatic gating. Such robust, optically detectable, and gate tunable dark trions provide a new path to realize electrically controllable trion transport in two-dimensional materials.
Many of the fundamental optical and electronic properties of atomically thin transition metal dichalcogenides are dominated by strong Coulomb interactions between electrons and holes, forming tightly bound atom-like excitons. Here, we directly trace the ultrafast formation of excitons by monitoring the absolute densities of bound and unbound electron-hole pairs in monolayers of WSe$_2$ following femtosecond non-resonant optical excitation. To this end, phase-locked mid-infrared probe pulses and field-sensitive electro-optic sampling are used to map out the full complex-valued optical conductivity of the non-equilibrium system and to discern the hallmark low-energy responses of bound and unbound pairs. While free charge carriers strongly influence the infrared response immediately after above-bandgap injection, up to 60% of the electron-hole pairs are bound as excitons already on a sub-picosecond timescale, evidencing extremely fast and efficient exciton formation. During the subsequent recombination phase, we still find a large density of free carriers in addition to excitons, indicating a non-equilibrium state of the photoexcited electron-hole system.
The results of magneto-optical spectroscopy investigations of excitons in a CVD grown monolayer of WSe2 encapsulated in hexagonal boron nitride are presented. The emission linewidth for the 1s state is of 4:7 meV, close to the narrowest emissions obs erved in monolayers exfoliated from bulk material. The 2s excitonic state is also observed at higher energies in the photoluminescence spectrum. Magneto-optical spectroscopy allows for the determination of the g-factors and of the spatial extent of the excitonic wave functions associated with these emissions. Our work establishes CVD grown monolayers of transition metal dichalcogenides as a mature technology for optoelectronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا