ترغب بنشر مسار تعليمي؟ اضغط هنا

The valley Nernst effect in WSe$_2$

150   0   0.0 ( 0 )
 نشر من قبل Matthieu Jamet
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Hall effect can be extended by inducing a temperature gradient in lieu of electric field that is known as the Nernst (-Ettingshausen) effect. The recently discovered spin Nernst effect in heavy metals continues to enrich the picture of Nernst effect-related phenomena. However, the collection would not be complete without mentioning the valley degree of freedom benchmarked by the observation of the valley Hall effect. Here we show the experimental evidence of its missing counterpart, the valley Nernst effect. Using millimeter-sized WSe$_{2}$ mono-multi-layers and the ferromagnetic resonance-spin pumping technique, we are able to apply a temperature gradient by off-centering the sample in the radio frequency cavity and address a single valley through spin-valley coupling. The combination of a temperature gradient and the valley polarization leads to the valley Nernst effect in WSe$_{2}$ that we detect electrically at room temperature. The valley Nernst coefficient is in very good agreement with the predicted value.



قيم البحث

اقرأ أيضاً

Interlayer excitons (IXs) possess a much longer lifetime than intralayer excitons due to the spatial separation of the electrons and holes; hence, they have been pursued to create exciton condensates for decades. The recent emergence of two-dimension al (2D) materials, such as transition metal dichalcogenides (TMDs), and of their van der Waals heterostructures (HSs), in which two different 2D materials are layered together, has created new opportunities to study IXs. Here we present the observation of IX gases within two stacked structures consisting of hBN/WSe$_2$/hBN/p: WSe$_2$/hBN. The IX energy of the two different structures differed by 82 meV due to the different thickness of the hBN spacer layer between the TMD layers. We demonstrate that the lifetime of the IXs is shortened when the temperature and the pump power increase. We attribute this nonlinear behavior to an Auger process.
Valley pseudospin in two-dimensional (2D) transition-metal dichalcogenides (TMDs) allows optical control of spin-valley polarization and intervalley quantum coherence. Defect states in TMDs give rise to new exciton features and theoretically exhibit spin-valley polarization; however, experimental achievement of this phenomenon remains challenges. Here, we report unambiguous valley pseudospin of defect-bound localized excitons in CVD-grown monolayer MoS2; enhanced valley Zeeman splitting with an effective g-factor of -6.2 is observed. Our results reveal that all five d-orbitals and the increased effective electron mass contribute to the band shift of defect states, demonstrating a new physics of the magnetic responses of defect-bound localized excitons, strikingly different from that of A excitons. Our work paves the way for the manipulation of the spin-valley degrees of freedom through defects toward valleytronic devices.
Anomalous Nernst effect, a result of charge current driven by temperature gradient, provides a probe of the topological nature of materials due to its sensitivity to the Berry curvature near the Fermi level. Fe3GeTe2, one important member of the rece ntly discovered two-dimensional van der Waals magnetic materials, offers a unique platform for anomalous Nernst effect because of its metallic and topological nature. Here, we report the observation of large anomalous Nernst effect in Fe3GeTe2. The anomalous Hall angle and anomalous Nernst angle are about 0.07 and 0.09 respectively, far larger than those in common ferromagnets. By utilizing the Mott relation, these large angles indicate a large Berry curvature near the Fermi level, consistent with the recent proposal for Fe3GeTe2 as a topological nodal line semimetal candidate. Our work provides evidence of Fe3GeTe2 as a topological ferromagnet, and demonstrates the feasibility of using two-dimensional magnetic materials and their band topology for spin caloritronics applications.
We report the observation and gate manipulation of intrinsic dark trions in monolayer WSe$_2$. By using ultraclean WSe$_2$ devices encapsulated by boron nitride, we directly resolve the weak photoluminescence of dark trions. The dark trions can be tu ned continuously between negative and positive charged trions with electrostatic gating. We also reveal their spin triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under magnetic field. The dark trions exhibit large binding energy (14-16 meV). Their lifetime (~1.3 ns) is two orders of magnitude longer than the bright trion lifetime (~10 ps) and can be tuned between 0.4 to 1.3 ns by electrostatic gating. Such robust, optically detectable, and gate tunable dark trions provide a new path to realize electrically controllable trion transport in two-dimensional materials.
Monolayer transition metal dichalcogenides (TMDs) hold great promise for future information processing applications utilizing a combination of electron spin and valley pseudospin. This unique spin system has led to observation of the valley Zeeman ef fect in neutral and charged excitonic resonances under applied magnetic fields. However, reported values of the trion valley Zeeman splitting remain highly inconsistent across studies. Here, we utilize high quality hBN encapsulated monolayer WSe$_2$ to enable simultaneous measurement of both intervalley and intravalley trion photoluminescence. We find the valley Zeeman splitting of each trion state to be describable only by a combination of three distinct g-factors, one arising from the exciton-like valley Zeeman effect, the other two, trion specific, g-factors associated with recoil of the excess electron. This complex picture goes significantly beyond the valley Zeeman effect reported for neutral excitons, and eliminates the ambiguity surrounding the magneto-optical response of trions in tungsten based TMD monolayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا