ﻻ يوجد ملخص باللغة العربية
In this paper, the coupled Rayleigh-Taylor-Kelvin-Helmholtz instability(RTI, KHI and RTKHI, respectively) system is investigated using a multiple-relaxation-time discrete Boltzmann model. Both the morphological boundary length and thermodynamic nonequilibrium (TNE) strength are introduced to probe the complex configurations and kinetic processes. In the simulations, RTI always plays a major role in the later stage, while the main mechanism in the early stage depends on the comparison of buoyancy and shear strength. It is found that, both the total boundary length $L$ of the condensed temperature field and the mean heat flux strength $D_{3,1}$ can be used to measure the ratio of buoyancy to shear strength, and to quantitatively judge the main mechanism in the early stage of the RTKHI system. Specifically, when KHI (RTI) dominates, $L^{KHI} > L^{RTI}$ ($L^{KHI} < L^{RTI}$), $D_{3,1}^{KHI} > D_{3,1}^{RTI}$ ($D_{3,1}^{KHI} < D_{3,1}^{RTI}$); when KHI and RTI are balanced, $L^{KHI} = L^{RTI}$, $D_{3,1}^{KHI} = D_{3,1}^{RTI}$. A second sets of findings are as below: For the case where the KHI dominates at earlier time and the RTI dominates at later time, the evolution process can be roughly divided into two stages. Before the transition point of the two stages, $L^{RTKHI}$ initially increases exponentially, and then increases linearly. Hence, the ending point of linear increasing $L^{RTKHI}$ can work as a geometric criterion for discriminating the two stages. The TNE quantity, heat flux strength $D_{3,1}^{RTKHI}$, shows similar behavior. Therefore, the ending point of linear increasing $D_{3,1}^{RTKHI}$ can work as a physical criterion for discriminating the two stages.
Rayleigh-Taylor-instability(RTI) induced flow and mixing are of great importance in both nature and engineering scenarios. To capture the underpinning physics, tracers are introduced to make a supplement to discrete Boltzmann simulation of RTI in com
The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless paramet
The effects of compressibility on Rayleigh-Taylor instability (RTI) are investigated by inspecting the interplay between thermodynamic and hydrodynamic non-equilibrium phenomena (TNE, HNE, respectively) via a discrete Boltzmann model (DBM). Two effec
We investigate the effects of viscosity and heat conduction on the onset and growth of Kelvin-Helmholtz instability (KHI) via an efficient discrete Boltzmann model. Technically, two effective approaches are presented to quantitatively analyze and und
The macroscopic dynamics of a droplet impacting a solid is crucially determined by the intricate air dynamics occurring at the vanishingly small length scale between droplet and substrate prior to direct contact. Here we investigate the inverse probl