ترغب بنشر مسار تعليمي؟ اضغط هنا

Deleting to Structured Trees

273   0   0.0 ( 0 )
 نشر من قبل Neeldhara Misra
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a natural variant of the well-known Feedback Vertex Set problem, namely the problem of deleting a small subset of vertices or edges to a full binary tree. This version of the problem is motivated by real-world scenarios that are best modeled by full binary trees. We establish that bo



قيم البحث

اقرأ أيضاً

Motivated by applications in network epidemiology, we consider the problem of determining whether it is possible to delete at most $k$ edges from a given input graph (of small treewidth) so that the resulting graph avoids a set $mathcal{F}$ of forbid den subgraphs; of particular interest is the problem of determining whether it is possible to delete at most $k$ edges so that the resulting graph has no connected component of more than $h$ vertices, as this bounds the worst-case size of an epidemic. While even this special case of the problem is NP-complete in general (even when $h=3$), we provide evidence that many of the real-world networks of interest are likely to have small treewidth, and we describe an algorithm which solves the general problem in time genruntime ~on an input graph having $n$ vertices and whose treewidth is bounded by a fixed constant $w$, if each of the subgraphs we wish to avoid has at most $r$ vertices. For the special case in which we wish only to ensure that no component has more than $h$ vertices, we improve on this to give an algorithm running in time $O((wh)^{2w}n)$, which we have implemented and tested on real datasets based on cattle movements.
Spreading processes on graphs are a natural model for a wide variety of real-world phenomena, including information spread over social networks and biological diseases spreading over contact networks. Often, the networks over which these processes sp read are dynamic in nature, and can be modeled with temporal graphs. Here, we study the problem of deleting edges from a given temporal graph in order to reduce the number of vertices (temporally) reachable from a given starting point. This could be used to control the spread of a disease, rumour, etc. in a temporal graph. In particular, our aim is to find a temporal subgraph in which a process starting at any single vertex can be transferred to only a limited number of other vertices using a temporally-feasible path. We introduce a natural edge-deletion problem for temporal graphs and provide positive and negative results on its computational complexity and approximability.
We consider the design of adaptive data structures for searching elements of a tree-structured space. We use a natural generalization of the rotation-based online binary search tree model in which the underlying search space is the set of vertices of a tree. This model is based on a simple structure for decomposing graphs, previously known under several names including elimination trees, vertex rankings, and tubings. The model is equivalent to the classical binary search tree model exactly when the underlying tree is a path. We describe an online $O(log log n)$-competitive search tree data structure in this model, matching the best known competitive ratio of binary search trees. Our method is inspired by Tango trees, an online binary search tree algorithm, but critically needs several new notions including one which we call Steiner-closed search trees, which may be of independent interest. Moreover our technique is based on a novel use of two levels of decomposition, first from search space to a set of Steiner-closed trees, and secondly from these trees into paths.
The detection of anomaly subgraphs naturally appears in various real-life tasks, yet label noise seriously interferes with the result. As a motivation for our work, we focus on inaccurate supervision and use prior knowledge to reduce effects of noise , like query graphs. Anomalies in attributed networks exhibit structured-properties, e.g., anomaly in money laundering with ring structure property. It is the main challenge to fast and approximate query anomaly in attributed networks. We propose a novel search method: 1) decomposing a query graph into stars; 2) sorting attributed vertices; and 3) assembling anomaly stars under the root vertex sequence into near query. We present ANOMALYMAXQ and perform on 68,411 company network (Tianyancha dataset),7.72m patent networks (Company patents) and so on. Extensive experiments show that our method has high robustness and fast response time. When running the patent dataset,the average running time to query the graph once is about 252 seconds.
We describe a technique to reorganize topologies of Steiner trees by exchanging neighbors of adjacent Steiner points. We explain how to use the systematic way of building trees, and therefore topologies, to find the correct topology after nodes have been exchanged. Topology reorganizations can be inserted into the enumeration scheme commonly used by exact algorithms for the Euclidean Steiner tree problem in $d$-space, providing a method of improvement different than the usual approaches. As an example, we show how topology reorganizations can be used to dynamically change the exploration of the usual branch-and-bound tree when two Steiner points collide during the optimization process. We also turn our attention to the erroneous use of a pre-optimization lower bound in the original algorithm and give an example to confirm its usage is incorrect. In order to provide numerical results on correct solutions, we use planar equilateral points to quickly compute this lower bound, even in dimensions higher than two. Finally, we describe planar twin trees, identical trees yielded by different topologies, whose generalization to higher dimensions could open a new way of building Steiner trees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا