ترغب بنشر مسار تعليمي؟ اضغط هنا

ANOMALYMAXQ:Anomaly-Structured Maximization to Query in Attributed Network

92   0   0.0 ( 0 )
 نشر من قبل Xinyue Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of anomaly subgraphs naturally appears in various real-life tasks, yet label noise seriously interferes with the result. As a motivation for our work, we focus on inaccurate supervision and use prior knowledge to reduce effects of noise, like query graphs. Anomalies in attributed networks exhibit structured-properties, e.g., anomaly in money laundering with ring structure property. It is the main challenge to fast and approximate query anomaly in attributed networks. We propose a novel search method: 1) decomposing a query graph into stars; 2) sorting attributed vertices; and 3) assembling anomaly stars under the root vertex sequence into near query. We present ANOMALYMAXQ and perform on 68,411 company network (Tianyancha dataset),7.72m patent networks (Company patents) and so on. Extensive experiments show that our method has high robustness and fast response time. When running the patent dataset,the average running time to query the graph once is about 252 seconds.



قيم البحث

اقرأ أيضاً

Submodular optimization generalizes many classic problems in combinatorial optimization and has recently found a wide range of applications in machine learning (e.g., feature engineering and active learning). For many large-scale optimization problem s, we are often concerned with the adaptivity complexity of an algorithm, which quantifies the number of sequential rounds where polynomially-many independent function evaluations can be executed in parallel. While low adaptivity is ideal, it is not sufficient for a distributed algorithm to be efficient, since in many practical applications of submodular optimization the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of adaptive submodular optimization. Our main result is a distributed algorithm for maximizing a monotone submodular function with cardinality constraint $k$ that achieves a $(1-1/e-varepsilon)$-approximation in expectation. This algorithm runs in $O(log(n))$ adaptive rounds and makes $O(n)$ calls to the function evaluation oracle in expectation. The approximation guarantee and query complexity are optimal, and the adaptivity is nearly optimal. Moreover, the number of queries is substantially less than in previous works. Last, we extend our results to the submodular cover problem to demonstrate the generality of our algorithm and techniques.
Submodular maximization is a general optimization problem with a wide range of applications in machine learning (e.g., active learning, clustering, and feature selection). In large-scale optimization, the parallel running time of an algorithm is gove rned by its adaptivity, which measures the number of sequential rounds needed if the algorithm can execute polynomially-many independent oracle queries in parallel. While low adaptivity is ideal, it is not sufficient for an algorithm to be efficient in practice---there are many applications of distributed submodular optimization where the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of submodular maximization. In this paper, we give the first constant-factor approximation algorithm for maximizing a non-monotone submodular function subject to a cardinality constraint $k$ that runs in $O(log(n))$ adaptive rounds and makes $O(n log(k))$ oracle queries in expectation. In our empirical study, we use three real-world applications to compare our algorithm with several benchmarks for non-monotone submodular maximization. The results demonstrate that our algorithm finds competitive solutions using significantly fewer rounds and queries.
We consider a mathematical model for the gas flow through a one-way valve and focus on two issues. First, we propose a way to eliminate the chattering (the fast switch on and off of the valve) by slightly modifying the design of the valve. This mathe matically amounts to the construction of a coupling Riemann solver with a suitable stability property, namely, coherence. We provide a numerical comparison of the behavior of the two valves. Second, we analyze, both analytically and numerically, for several significative situations, the maximization of the flow through the modified valve according to a control parameter of the valve and time.
193 - Chengbin Hou , Shan He , Ke Tang 2018
Attributed networks are ubiquitous since a network often comes with auxiliary attribute information e.g. a social network with user profiles. Attributed Network Embedding (ANE) has recently attracted considerable attention, which aims to learn unifie d low dimensional node embeddings while preserving both structural and attribute information. The resulting node embeddings can then facilitate various network downstream tasks e.g. link prediction. Although there are several ANE methods, most of them cannot deal with incomplete attributed networks with missing links and/or missing node attributes, which often occur in real-world scenarios. To address this issue, we propose a robust ANE method, the general idea of which is to reconstruct a unified denser network by fusing two sources of information for information enhancement, and then employ a random walks based network embedding method for learning node embeddings. The experiments of link prediction, node classification, visualization, and parameter sensitivity analysis on six real-world datasets validate the effectiveness of our method to incomplete attributed networks.
We consider a natural variant of the well-known Feedback Vertex Set problem, namely the problem of deleting a small subset of vertices or edges to a full binary tree. This version of the problem is motivated by real-world scenarios that are best modeled by full binary trees. We establish that bo
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا