ﻻ يوجد ملخص باللغة العربية
The detection of anomaly subgraphs naturally appears in various real-life tasks, yet label noise seriously interferes with the result. As a motivation for our work, we focus on inaccurate supervision and use prior knowledge to reduce effects of noise, like query graphs. Anomalies in attributed networks exhibit structured-properties, e.g., anomaly in money laundering with ring structure property. It is the main challenge to fast and approximate query anomaly in attributed networks. We propose a novel search method: 1) decomposing a query graph into stars; 2) sorting attributed vertices; and 3) assembling anomaly stars under the root vertex sequence into near query. We present ANOMALYMAXQ and perform on 68,411 company network (Tianyancha dataset),7.72m patent networks (Company patents) and so on. Extensive experiments show that our method has high robustness and fast response time. When running the patent dataset,the average running time to query the graph once is about 252 seconds.
Submodular optimization generalizes many classic problems in combinatorial optimization and has recently found a wide range of applications in machine learning (e.g., feature engineering and active learning). For many large-scale optimization problem
Submodular maximization is a general optimization problem with a wide range of applications in machine learning (e.g., active learning, clustering, and feature selection). In large-scale optimization, the parallel running time of an algorithm is gove
We consider a mathematical model for the gas flow through a one-way valve and focus on two issues. First, we propose a way to eliminate the chattering (the fast switch on and off of the valve) by slightly modifying the design of the valve. This mathe
Attributed networks are ubiquitous since a network often comes with auxiliary attribute information e.g. a social network with user profiles. Attributed Network Embedding (ANE) has recently attracted considerable attention, which aims to learn unifie
We consider a natural variant of the well-known Feedback Vertex Set problem, namely the problem of deleting a small subset of vertices or edges to a full binary tree. This version of the problem is motivated by real-world scenarios that are best modeled by full binary trees. We establish that bo