ﻻ يوجد ملخص باللغة العربية
Atomistic simulations are performed to study the statistical mechanical property of gold nanoparticles. It is demonstrated that the yielding behavior of gold nanoparticles is governed by dislocation nucleation around surface steps. Since the nucleation of dislocations is an activated process with the aid of thermal fluctuation, the yield stress at a specific temperature should exhibit a statistical distribution rather than a definite constant value. Molecular dynamics simulations reveal that the yield stress follows a Gaussian distribution at a specific temperature. As the temperature increases, the mean value of yield stress decreases while the width of distribution becomes larger. Based on numerical analysis, the dependence of the mean yield stress on temperature can be well described by a parabolic function. Present study illuminates the statistical features of the yielding behavior of nanostructured elements.
The results of density functional theory calculations and measurements using X-ray photoelectron spectroscopy of Co-nanoparticles dispersed on graphene/Cu are presented. It is found that for low cobalt thickness (0.02 nm - 0.06 nm) the Co forms islan
Normal stresses in complex fluids lead to new flow phenomena because they can be comparable to or even larger than the shear stress itself. In addition, they are of paramount importance for formulating and testing constitutive equations for predictin
We report a novel synthesis for near monodisperse, sub-10-nm Bi2Te3 nanoparticles. At first, a new reduction route to bismuth nanoparticles is described which are applied as starting materials in the formation of rhombohedral Bi2Te3 nanoparticles. Af
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display under external shear a solid-to-liquid transition. Such a shear-induced transition is often associated with a non-monotonic stress response, in the form of a stress maxim
Using a simple mathematical model, we demonstrate that statistical kinetics of phase-transforming nanoparticles in porous electrodes results in macroscopic non-monotonic transient currents, which could be misinterpreted as the nucleation and growth m