ﻻ يوجد ملخص باللغة العربية
Normal stresses in complex fluids lead to new flow phenomena because they can be comparable to or even larger than the shear stress itself. In addition, they are of paramount importance for formulating and testing constitutive equations for predicting non-viscometric flow behavior. Very little attention has so far been paid to the normal stresses of yield stress fluids, mainly because they are very difficult to measure. We report the first systematic study of the first and second normal stress differences, N1 (>0) and N2 (<0), in both continuous and oscillatory shear of three model yield stress fluids. We show that both normal stress differences are quadratic functions of the shear stress both above and below the shear yield stress, leading to the existence of a yield normal stress.
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display under external shear a solid-to-liquid transition. Such a shear-induced transition is often associated with a non-monotonic stress response, in the form of a stress maxim
Stability of coarse particles against gravity is an important issue in dense suspensions (fresh concrete, foodstuff, etc.). On the one hand, it is known that they are stable at rest when the interstitial paste has a high enough yield stress; on the o
We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompass a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disorder
We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When
Materials such as foams, concentrated emulsions, dense suspensions or colloidal gels, are yield stress fluids. Their steady flow behavior, characterized by standard rheometric techniques, is usually modeled by a Herschel-Bulkley law. The emergence of