ﻻ يوجد ملخص باللغة العربية
We report a novel synthesis for near monodisperse, sub-10-nm Bi2Te3 nanoparticles. At first, a new reduction route to bismuth nanoparticles is described which are applied as starting materials in the formation of rhombohedral Bi2Te3 nanoparticles. After ligand removal by a novel hydrazine hydrate etching procedure, the nanoparticle powder is spark plasma sintered to a pellet with preserved crystal grain sizes. Unlike previous works on the properties of Bi2Te3 nanoparticles, the full thermoelectric characterization of such sintered pellets shows a highly reduced thermal conductivity and the same electric conductivity as bulk n-type Bi2Te3.
Polymer assisted spherical FeNi nanoparticles were prepared via wet chemical method using hydrazine as a reducing agent and polymers (PVP and PEG) as reducing and stabilizing agent. Structural studies performed using XRD and TEM shows uniform dispers
We studied the influence of sample preparation and defects in the superconducting properties samples using atomic ratios of Mg:B=1:1 and Mg:B=1:2. Samples were characterized by SEM, and XRD, and the magnetization properties were examined in a SQUID m
Arising from the interplay between charge, spin and orbital of electrons, spin-orbit torque (SOT) has attracted immense interest in the past decade. Despite vast progress, the existing quantification methods of SOT still have their respective restric
The six nanosized PrF3 samples were synthesized using two different chemical reactions and different time of hydrothermal reaction. The X-ray and HRTEM experiments showed high crystallinity of synthesized samples. For all samples the particles size d
Atomistic simulations are performed to study the statistical mechanical property of gold nanoparticles. It is demonstrated that the yielding behavior of gold nanoparticles is governed by dislocation nucleation around surface steps. Since the nucleati