ﻻ يوجد ملخص باللغة العربية
The realization of quantum error correction is an essential ingredient for reaching the full potential of fault-tolerant universal quantum computation. Using a range of different schemes, logical qubits can be redundantly encoded in a set of physical qubits. One such scalable approach is based on the surface code. Here we experimentally implement its smallest viable instance, capable of repeatedly detecting any single error using seven superconducting qubits, four data qubits and three ancilla qubits. Using high-fidelity ancilla-based stabilizer measurements we initialize the cardinal states of the encoded logical qubit with an average logical fidelity of 96.1%. We then repeatedly check for errors using the stabilizer readout and observe that the logical quantum state is preserved with a lifetime and coherence time longer than those of any of the constituent qubits when no errors are detected. Our demonstration of error detection with its resulting enhancement of the conditioned logical qubit coherence times in a 7-qubit surface code is an important step indicating a promising route towards the realization of quantum error correction in the surface code.
The yield of physical qubits fabricated in the laboratory is much lower than that of classical transistors in production semiconductor fabrication. Actual implementations of quantum computers will be susceptible to loss in the form of physically faul
Bosonic quantum error correction is a viable option for realizing error-corrected quantum information processing in continuous-variable bosonic systems. Various single-mode bosonic quantum error-correcting codes such as cat, binomial, and GKP codes h
The surface code is a promising candidate for fault-tolerant quantum computation, achieving a high threshold error rate with nearest-neighbor gates in two spatial dimensions. Here, through a series of numerical simulations, we investigate how the pre
We report the first nonadditive quantum error-correcting code, namely, a $((9,12,3))$ code which is a 12-dimensional subspace within a 9-qubit Hilbert space, that outperforms the optimal stabilizer code of the same length by encoding more levels while correcting arbitrary single-qubit errors.
We realize a suite of logical operations on a distance-two logical qubit stabilized using repeated error detection cycles. Logical operations include initialization into arbitrary states, measurement in the cardinal bases of the Bloch sphere, and a u