ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Code Error Correction on a Defective Lattice

74   0   0.0 ( 0 )
 نشر من قبل Shota Nagayama
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The yield of physical qubits fabricated in the laboratory is much lower than that of classical transistors in production semiconductor fabrication. Actual implementations of quantum computers will be susceptible to loss in the form of physically faulty qubits. Though these physical faults must negatively affect the computation, we can deal with them by adapting error correction schemes. In this paper We have simulated statically placed single-fault lattices and lattices with randomly placed faults at functional qubit yields of 80%, 90% and 95%, showing practical performance of a defective surface code by employing actual circuit constructions and realistic errors on every gate, including identity gates. We extend Stace et al.s superplaquettes solution against dynamic losses for the surface code to handle static losses such as physically faulty qubits. The single-fault analysis shows that a static loss at the periphery of the lattice has less negative effect than a static loss at the center. The randomly-faulty analysis shows that 95% yield is good enough to build a large scale quantum computer. The local gate error rate threshold is $sim 0.3%$, and a code distance of seven suppresses the residual error rate below the original error rate at $p=0.1%$. 90% yield is also good enough when we discard badly fabricated quantum computation chips, while 80% yield does not show enough error suppression even when discarding 90% of the chips. We evaluated several metrics for predicting chip performance, and found that the average of the product of the number of data qubits and the cycle time of a stabilizer measurement of stabilizers gave the strongest correlation with post-correction residual error rates. Our analysis will help with selecting usable quantum computation chips from among the pool of all fabricated chips.



قيم البحث

اقرأ أيضاً

Topologically quantum error corrected logical gates are complex. Chains of errors can form in space and time and diagonally in spacetime. It is highly nontrivial to determine whether a given logical gate is free of low weight combinations of errors l eading to failure. We report a new tool Nestcheck capable of analyzing an arbitrary topological computation and determining the minimum number of errors required to cause failure.
Bosonic quantum error correction is a viable option for realizing error-corrected quantum information processing in continuous-variable bosonic systems. Various single-mode bosonic quantum error-correcting codes such as cat, binomial, and GKP codes h ave been implemented experimentally in circuit QED and trapped ion systems. Moreover, there have been many theoretical proposals to scale up such single-mode bosonic codes to realize large-scale fault-tolerant quantum computation. Here, we consider the concatenation of the single-mode GKP code with the surface code, namely, the surface-GKP code. In particular, we thoroughly investigate the performance of the surface-GKP code by assuming realistic GKP states with a finite squeezing and noisy circuit elements due to photon losses. By using a minimum-weight perfect matching decoding algorithm on a 3D space-time graph, we show that fault-tolerant quantum error correction is possible with the surface-GKP code if the squeezing of the GKP states is higher than 11.2dB in the case where the GKP states are the only noisy elements. We also show that the squeezing threshold changes to 18:6dB when both the GKP states and circuit elements are comparably noisy. At this threshold, each circuit component fails with probability 0.69%. Finally, if the GKP states are noiseless, fault-tolerant quantum error correction with the surface-GKP code is possible if each circuit element fails with probability less than 0.81%. We stress that our decoding scheme uses the additional information from GKP-stabilizer measurements and we provide a simple method to compute renormalized edge weights of the matching graphs. Furthermore, our noise model is general as it includes full circuit-level noise.
186 - Ashley M. Stephens 2013
The surface code is a promising candidate for fault-tolerant quantum computation, achieving a high threshold error rate with nearest-neighbor gates in two spatial dimensions. Here, through a series of numerical simulations, we investigate how the pre cise value of the threshold depends on the noise model, measurement circuits, and decoding algorithm. We observe thresholds between 0.502(1)% and 1.140(1)% per gate, values which are generally lower than previous estimates.
We consider a surface code suffering decoherence due to coupling to a bath of bosonic modes at finite temperature and study the time available before the unavoidable breakdown of error correction occurs as a function of coupling and bath parameters. We derive an exact expression for the error rate on each individual qubit of the code, taking spatial and temporal correlations between the errors into account. We investigate numerically how different kinds of spatial correlations between errors in the surface code affect its threshold error rate. This allows us to derive the maximal duration of each quantum error correction period by studying when the single-qubit error rate reaches the corresponding threshold. At the time when error correction breaks down, the error rate in the code can be dominated by the direct coupling of each qubit to the bath, by mediated subluminal interactions, or by mediated superluminal interactions. For a 2D Ohmic bath, the time available per quantum error correction period vanishes in the thermodynamic limit of a large code size $L$ due to induced superluminal interactions, though it does so only like $1/sqrt{log L}$. For all other bath types considered, this time remains finite as $Lrightarrowinfty$.
Fault-tolerant quantum error correction is essential for implementing quantum algorithms of significant practical importance. In this work, we propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qu bits instead of bare two-dimensional qubits. In our proposal, we use error-corrected two-qubit gates between GKP qubits and introduce a maximum likelihood decoding strategy for correcting shift errors in the two-GKP-qubit gates. Our proposed decoding reduces the total CNOT failure rate of the GKP qubits, e.g., from $0.87%$ to $0.36%$ at a GKP squeezing of $12$dB, compared to the case where the simple closest-integer decoding is used. Then, by concatenating the GKP code with the surface code, we find that the threshold GKP squeezing is given by $9.9$dB under the the assumption that finite-squeezing of the GKP states is the dominant noise source. More importantly, we show that a low logical failure rate $p_{L} < 10^{-7}$ can be achieved with moderate hardware requirements, e.g., $291$ modes and $97$ qubits at a GKP squeezing of $12$dB as opposed to $1457$ bare qubits for the standard rotated surface code at an equivalent noise level (i.e., $p=0.36%$). Such a low failure rate of our surface-GKP code is possible through the use of space-time correlated edges in the matching graphs of the surface code decoder. Further, all edge weights in the matching graphs are computed dynamically based on analog information from the GKP error correction using the full history of all syndrome measurement rounds. We also show that a highly-squeezed GKP state of GKP squeezing $gtrsim 12$dB can be experimentally realized by using a dissipative stabilization method, namely, the Big-small-Big method, with fairly conservative experimental parameters. Lastly, we introduce a three-level ancilla scheme to mitigate ancilla decay errors during a GKP state preparation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا