ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonadditive quantum error-correcting code

408   0   0.0 ( 0 )
 نشر من قبل Sixia Yu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first nonadditive quantum error-correcting code, namely, a $((9,12,3))$ code which is a 12-dimensional subspace within a 9-qubit Hilbert space, that outperforms the optimal stabilizer code of the same length by encoding more levels while correcting arbitrary single-qubit errors.



قيم البحث

اقرأ أيضاً

172 - Sixia Yu , Qing Chen , C.H. Oh 2009
We construct explicitly two infinite families of genuine nonadditive 1-error correcting quantum codes and prove that their coding subspaces are 50% larger than those of the optimal stabilizer codes of the same parameters via the linear programming bo und. All these nonadditive codes can be characterized by a stabilizer-like structure and thus their encoding circuits can be designed in a straightforward manner.
We propose a linear-optical implementation of a hyperentanglement-assisted quantum error-correcting code. The code is hyperentanglement-assisted because the shared entanglement resource is a photonic state hyperentangled in polarization and orbital a ngular momentum. It is possible to encode, decode, and diagnose channel errors using linear-optical techniques. The code corrects for polarization flip errors and is thus suitable only for a proof-of-principle experiment. The encoding and decoding circuits use a Knill-Laflamme-Milburn-like scheme for transforming polarization and orbital angular momentum photonic qubits. A numerical optimization algorithm finds a unit-fidelity encoding circuit that requires only three ancilla modes and has success probability equal to 0.0097.
Kitaevs quantum double models in 2D provide some of the most commonly studied examples of topological quantum order. In particular, the ground space is thought to yield a quantum error-correcting code. We offer an explicit proof that this is the case for arbitrary finite groups. Actually a stronger claim is shown: any two states with zero energy density in some contractible region must have the same reduced state in that region. Alternatively, the local properties of a gauge-invariant state are fully determined by specifying that its holonomies in the region are trivial. We contrast this result with the fact that local properties of gauge-invariant states are not generally determined by specifying all of their non-Abelian fluxes -- that is, the Wilson loops of lattice gauge theory do not form a complete commuting set of observables. We also note that the methods developed by P. Naaijkens (PhD thesis, 2012) under a different context can be adapted to provide another proof of the error correcting property of Kitaevs model. Finally, we compute the topological entanglement entropy in Kitaevs model, and show, contrary to previous claims in the literature, that it does not depend on whether the log dim R term is included in the definition of entanglement entropy.
131 - Ming Gong , Xiao Yuan , Shiyu Wang 2019
Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum er ror correcting code, with the subsequent verification of all key features including the identification of an arbitrary physical error, the capability for transversal manipulation of the logical state, and state decoding. To address this challenge, we experimentally realise the $[![5,1,3]!]$ code, the so-called smallest perfect code that permits corrections of generic single-qubit errors. In the experiment, having optimised the encoding circuit, we employ an array of superconducting qubits to realise the $[![5,1,3]!]$ code for several typical logical states including the magic state, an indispensable resource for realising non-Clifford gates. The encoded states are prepared with an average fidelity of $57.1(3)%$ while with a high fidelity of $98.6(1)%$ in the code space. Then, the arbitrary single-qubit errors introduced manually are identified by measuring the stabilizers. We further implement logical Pauli operations with a fidelity of $97.2(2)%$ within the code space. Finally, we realise the decoding circuit and recover the input state with an overall fidelity of $74.5(6)%$, in total with $92$ gates. Our work demonstrates each key aspect of the $[![5,1,3]!]$ code and verifies the viability of experimental realization of quantum error correcting codes with superconducting qubits.
161 - Sixia Yu , Qing Chen , C.H. Oh 2007
We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are pot entially more efficient, is not as well understood as that of stabilizer codes. Our graphical approach provides a unified and classical way to construct both stabilizer and nonadditive codes. In particular we have explicitly constructed the optimal ((10,24,3)) code and a family of 1-error detecting nonadditive codes with the highest encoding rate so far. In the case of stabilizer codes a thorough search becomes tangible and we have classified all the extremal stabilizer codes up to 8 qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا