ﻻ يوجد ملخص باللغة العربية
We study (unrooted) random forests on a graph where the probability of a forest is multiplicatively weighted by a parameter $beta>0$ per edge. This is called the arboreal gas model, and the special case when $beta=1$ is the uniform forest model. The arboreal gas can equivalently be defined to be Bernoulli bond percolation with parameter $p=beta/(1+beta)$ conditioned to be acyclic, or as the limit $qto 0$ with $p=beta q$ of the random cluster model. It is known that on the complete graph $K_{N}$ with $beta=alpha/N$ there is a phase transition similar to that of the ErdH{o}s--Renyi random graph: a giant tree percolates for $alpha > 1$ and all trees have bounded size for $alpha<1$. In contrast to this, by exploiting an exact relationship between the arboreal gas and a supersymmetric sigma model with hyperbolic target space, we show that the forest constraint is significant in two dimensions: trees do not percolate on $mathbb{Z}^2$ for any finite $beta>0$. This result is a consequence of a Mermin--Wagner theorem associated to the hyperbolic symmetry of the sigma model. Our proof makes use of two main ingredients: techniques previously developed for hyperbolic sigma models related to linearly reinforced random walks and a version of the principle of dimensional reduction.
The arboreal gas is the probability measure on (unrooted spanning) forests of a graph in which each forest is weighted by a factor $beta>0$ per edge. It arises as the $qto 0$ limit with $p=beta q$ of the $q$-state random cluster model. We prove that
Spin systems with hyperbolic symmetry originated as simplified models for the Anderson metal--insulator transition, and were subsequently found to exactly describe probabilistic models of linearly reinforced walks and random forests. In this survey w
The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the
Considering the wired uniform spanning forest on a nonunimodular transitive graph, we show that almost surely each tree of the wired uniform spanning forest is light. More generally we study the tilted volumes for the trees in the wired uniform spann
We consider reversible random walks in random environment obtained from symmetric long--range jump rates on a random point process. We prove almost sure transience and recurrence results under suitable assumptions on the point process and the jump ra