ﻻ يوجد ملخص باللغة العربية
Considering the wired uniform spanning forest on a nonunimodular transitive graph, we show that almost surely each tree of the wired uniform spanning forest is light. More generally we study the tilted volumes for the trees in the wired uniform spanning forest. Regarding the free uniform spanning forest, we consider several families of nonunimodular transitive graphs. We show that the free uniform spanning forest is the same as the wired one on Diestel--Leader graphs. For grandparent graphs, we show that the free uniform spanning forest is connected and has branching number bigger than one. We also show that each tree of the free uniform spanning forest is heavy and has branching number bigger than one on a free product of a nonunimodular transitive graph with one edge when the free uniform spanning forest is not the same as the wired.
Consider simple random walk $(S_n)_{ngeq0}$ on a transitive graph with spectral radius $rho$. Let $u_n=mathbb{P}[S_n=S_0]$ be the $n$-step return probability. It is a folklore conjecture that on transient, transitive graphs $u_n/rho^n$ is at most of
We study (unrooted) random forests on a graph where the probability of a forest is multiplicatively weighted by a parameter $beta>0$ per edge. This is called the arboreal gas model, and the special case when $beta=1$ is the uniform forest model. The
We calculate exponential growth constants $phi$ and $sigma$ describing the asymptotic behavior of spanning forests and connected spanning subgraphs on strip graphs, with arbitrarily great length, of several two-dimensional lattices, including square,
We consider uniform spanning tree (UST) in topological polygons with $2N$ marked points on the boundary with alternating boundary conditions. In [LPW21], the authors derive the scaling limit of the Peano curve in the UST. They are variants of SLE$_8$
We study a generalisation of the random recursive tree (RRT) model and its multigraph counterpart, the uniform directed acyclic graph (DAG). Here, vertices are equipped with a random vertex-weight representing initial inhomogeneities in the network,