ترغب بنشر مسار تعليمي؟ اضغط هنا

Weights of uniform spanning forests on nonunimodular transitive graphs

69   0   0.0 ( 0 )
 نشر من قبل Pengfei Tang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Pengfei Tang




اسأل ChatGPT حول البحث

Considering the wired uniform spanning forest on a nonunimodular transitive graph, we show that almost surely each tree of the wired uniform spanning forest is light. More generally we study the tilted volumes for the trees in the wired uniform spanning forest. Regarding the free uniform spanning forest, we consider several families of nonunimodular transitive graphs. We show that the free uniform spanning forest is the same as the wired one on Diestel--Leader graphs. For grandparent graphs, we show that the free uniform spanning forest is connected and has branching number bigger than one. We also show that each tree of the free uniform spanning forest is heavy and has branching number bigger than one on a free product of a nonunimodular transitive graph with one edge when the free uniform spanning forest is not the same as the wired.



قيم البحث

اقرأ أيضاً

70 - Pengfei Tang 2021
Consider simple random walk $(S_n)_{ngeq0}$ on a transitive graph with spectral radius $rho$. Let $u_n=mathbb{P}[S_n=S_0]$ be the $n$-step return probability. It is a folklore conjecture that on transient, transitive graphs $u_n/rho^n$ is at most of the order $n^{-3/2}$. We prove this conjecture for graphs with a closed, transitive, amenable and nonunimodular subgroup of automorphisms. We also study the first return probability $f_n$. For a graph $G$ with a closed, transitive, nonunimodular subgroup of automorphisms, we show that there is a positive constant $c$ such that $f_ngeq frac{u_n}{cn^c}$. We also make some conjectures related to $f_n$ and $u_n$ for transient, transitive graphs.
We study (unrooted) random forests on a graph where the probability of a forest is multiplicatively weighted by a parameter $beta>0$ per edge. This is called the arboreal gas model, and the special case when $beta=1$ is the uniform forest model. The arboreal gas can equivalently be defined to be Bernoulli bond percolation with parameter $p=beta/(1+beta)$ conditioned to be acyclic, or as the limit $qto 0$ with $p=beta q$ of the random cluster model. It is known that on the complete graph $K_{N}$ with $beta=alpha/N$ there is a phase transition similar to that of the ErdH{o}s--Renyi random graph: a giant tree percolates for $alpha > 1$ and all trees have bounded size for $alpha<1$. In contrast to this, by exploiting an exact relationship between the arboreal gas and a supersymmetric sigma model with hyperbolic target space, we show that the forest constraint is significant in two dimensions: trees do not percolate on $mathbb{Z}^2$ for any finite $beta>0$. This result is a consequence of a Mermin--Wagner theorem associated to the hyperbolic symmetry of the sigma model. Our proof makes use of two main ingredients: techniques previously developed for hyperbolic sigma models related to linearly reinforced random walks and a version of the principle of dimensional reduction.
We calculate exponential growth constants $phi$ and $sigma$ describing the asymptotic behavior of spanning forests and connected spanning subgraphs on strip graphs, with arbitrarily great length, of several two-dimensional lattices, including square, triangular, honeycomb, and certain heteropolygonal Archimedean lattices. By studying the limiting values as the strip widths get large, we infer lower and upper bounds on these exponential growth constants for the respective infinite lattices. Since our lower and upper bounds are quite close to each other, we can infer very accurate approximate values for these exponential growth constants, with fractional uncertainties ranging from $O(10^{-4})$ to $O(10^{-2})$. We show that $phi$ and $sigma$, are monotonically increasing functions of vertex degree for these lattices.
97 - Mingchang Liu , Hao Wu 2021
We consider uniform spanning tree (UST) in topological polygons with $2N$ marked points on the boundary with alternating boundary conditions. In [LPW21], the authors derive the scaling limit of the Peano curve in the UST. They are variants of SLE$_8$ . In this article, we derive the scaling limit of the loop-erased random walk branch (LERW) in the UST. They are variants of SLE$_2$. The conclusion is a generalization of [HLW20,Theorem 1.6] where the authors derive the scaling limit of the LERW branch of UST when $N=2$. When $N=2$, the limiting law is SLE$_2(-1,-1; -1, -1)$. However, the limiting law is nolonger in the family of SLE$_2(rho)$ process as long as $Nge 3$.
We study a generalisation of the random recursive tree (RRT) model and its multigraph counterpart, the uniform directed acyclic graph (DAG). Here, vertices are equipped with a random vertex-weight representing initial inhomogeneities in the network, so that a new vertex connects to one of the old vertices with a probability that is proportional to their vertex-weight. We first identify the asymptotic degree distribution of a uniformly chosen vertex for a general vertex-weight distribution. For the maximal degree, we distinguish several classes that lead to different behaviour: For bounded vertex-weights we obtain results for the maximal degree that are similar to those observed for RRTs and DAGs. If the vertex-weights have unbounded support, then the maximal degree has to satisfy the right balance between having a high vertex-weight and being born early. For vertex-weights in the Frechet maximum domain of attraction the first order behaviour of the maximal degree is random, while for those in the Gumbel maximum domain of attraction the leading order is deterministic. Surprisingly, in the latter case, the second order is random when considering vertices in a compact window in the optimal region, while it becomes deterministic when considering all vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا