ﻻ يوجد ملخص باللغة العربية
The arboreal gas is the probability measure on (unrooted spanning) forests of a graph in which each forest is weighted by a factor $beta>0$ per edge. It arises as the $qto 0$ limit with $p=beta q$ of the $q$-state random cluster model. We prove that in dimensions $dgeq 3$ the arboreal gas undergoes a percolation phase transition. This contrasts with the case of $d=2$ where all trees are finite for all $beta>0$. The starting point for our analysis is an exact relationship between the arboreal gas and a fermionic non-linear sigma model with target space $mathbb{H}^{0|2}$. This latter model can be thought of as the $0$-state Potts model, with the arboreal gas being its random cluster representation. Unlike the $q>0$ Potts models, the $mathbb{H}^{0|2}$ model has continuous symmetries. By combining a renormalisation group analysis with Ward identities we prove that this symmetry is spontaneously broken at low temperatures. In terms of the arboreal gas, this symmetry breaking translates into the existence of infinite trees in the thermodynamic limit. Our analysis also establishes massless free field correlations at low temperatures and the existence of a macroscopic tree on finite tori.
We study (unrooted) random forests on a graph where the probability of a forest is multiplicatively weighted by a parameter $beta>0$ per edge. This is called the arboreal gas model, and the special case when $beta=1$ is the uniform forest model. The
We prove that for Bernoulli percolation on $mathbb{Z}^d$, $dgeq 2$, the percolation density is an analytic function of the parameter in the supercritical interval. For this we introduce some techniques that have further implications. In particular, w
We consider instances of long-range percolation on $mathbb Z^d$ and $mathbb R^d$, where points at distance $r$ get connected by an edge with probability proportional to $r^{-s}$, for $sin (d,2d)$, and study the asymptotic of the graph-theoretical (a.
A bootstrap percolation process on a graph $G$ is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least $r$ infected neighbours becomes infect
We prove that for Bernoulli bond percolation on $mathbb{Z}^d$, $dgeq 2$ the percolation density is an analytic function of the parameter in the supercritical interval $(p_c,1]$. This answers a question of Kesten from 1981.