ﻻ يوجد ملخص باللغة العربية
We study how to dynamize the Trapezoidal Search Tree - a well known randomized point location structure for planar subdivisions of kinetic line segments. Our approach naturally extends incremental leaf-level insertions to recursive methods and allows adaptation for the online setting. Moreover, the dynamization carries over to the Trapezoidal Search DAG, offering a linear sized data structure with logarithmic point location costs as a by-product. On a set $S$ of non-crossing segments, each update performs expected ${mathcal O}(log^2|S|)$ operations. We demonstrate the practicality of our method with an open-source implementation, based on the Computational Geometry Algorithms Library, and experiments on the update performance.
We present self-adjusting data structures for answering point location queries in convex and connected subdivisions. Let $n$ be the number of vertices in a convex or connected subdivision. Our structures use $O(n)$ space. For any convex subdivision $
We propose a dynamic data structure for the distribution-sensitive point location problem. Suppose that there is a fixed query distribution in $mathbb{R}^2$, and we are given an oracle that can return in $O(1)$ time the probability of a query point f
Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric.
Given a finite set $X subset mathbb{R}^d$ and a binary linear classifier $c: mathbb{R}^d to {0,1}$, how many queries of the form $c(x)$ are required to learn the label of every point in $X$? Known as textit{point location}, this problem has inspired
We study dynamic planar point location in the External Memory Model or Disk Access Model (DAM). Previous work in this model achieves polylog query and polylog amortized update time. We present a data structure with $O( log_B^2 N)$ query time and $O(f