ﻻ يوجد ملخص باللغة العربية
We study dynamic planar point location in the External Memory Model or Disk Access Model (DAM). Previous work in this model achieves polylog query and polylog amortized update time. We present a data structure with $O( log_B^2 N)$ query time and $O(frac{1}{ B^{1-epsilon}} log_B N)$ amortized update time, where $N$ is the number of segments, $B$ the block size and $epsilon$ is a small positive constant, under the assumption that all faces have constant size. This is a $B^{1-epsilon}$ factor faster for updates than the fastest previous structure, and brings the cost of insertion and deletion down to subconstant amortized time for reasonable choices of $N$ and $B$. Our structure solves the problem of vertical ray-shooting queries among a dynamic set of interior-disjoint line segments; this is well-known to solve dynamic planar point location for a connected subdivision of the plane with faces of constant size.
We present self-adjusting data structures for answering point location queries in convex and connected subdivisions. Let $n$ be the number of vertices in a convex or connected subdivision. Our structures use $O(n)$ space. For any convex subdivision $
We study the problem of validating XML documents of size $N$ against general DTDs in the context of streaming algorithms. The starting point of this work is a well-known space lower bound. There are XML documents and DTDs for which $p$-pass streaming
In the unit-cost comparison model, a black box takes an input two items and outputs the result of the comparison. Problems like sorting and searching have been studied in this model, and it has been generalized to include the concept of priced inform
In this paper we describe algorithms for computing the BWT and for building (compressed) indexes in external memory. The innovative feature of our algorithms is that they are lightweight in the sense that, for an input of size $n$, they use only ${n}
We study how to dynamize the Trapezoidal Search Tree - a well known randomized point location structure for planar subdivisions of kinetic line segments. Our approach naturally extends incremental leaf-level insertions to recursive methods and allo