ﻻ يوجد ملخص باللغة العربية
In this work, we study the behavior of blow-up solutions to the multidimensional restricted Euler--Poisson equations which are the localized version of the full Euler--Poisson system. We provide necessary conditions for the existence of finite-time blow-up solutions in terms of the initial data, and describe the asymptotic behavior of the solutions near blow up times. We also identify a rich set of the initial data which yields global bounded solutions.
In this paper, we investigate the problem of blow up and sharp upper bound estimates of the lifespan for the solutions to the semilinear wave equations, posed on asymptotically Euclidean manifolds. Here the metric is assumed to be exponential perturb
In this paper, we study existence of boundary blow-up solutions for elliptic equations involving regional fractional Laplacian. We also discuss the optimality of our results.
We show that blow up of solutions with arbitrary positive initial energy of the Cauchy problem for the abstract wacve eqation of the form $Pu_{tt}+Au=F(u) (*)$ in a Hilbert space, where $P,A$ are positive linear operators and $F(cdot)$ is a continuo
The well-posedness for the supersonic solutions of the Euler-Poisson system for hydrodynamical model in semiconductor devices and plasmas is studied in this paper. We first reformulate the Euler-Poisson system in the supersonic region into a second o
In this short note, we present a construction for the log-log blow up solutions to focusing mass-critical stochastic nonlinear Schroidnger equations with multiplicative noises. The solution is understood in the sense of controlled rough path as in cite{SZ20}.