ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifespan estimates for $2$-dimensional semilinear wave equations in asymptotically Euclidean exterior domains

85   0   0.0 ( 0 )
 نشر من قبل Mengyun Liu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the initial boundary value problem for two-dimensional semilinear wave equations with small data, in asymptotically Euclidean exterior domains. We prove that if $1<ple p_c(2)$, the problem admits almost the same upper bound of the lifespan as that of the corresponding Cauchy problem, only with a small loss for $1<ple 2$. It is interesting to see that the logarithmic increase of the harmonic function in $2$-D has no influence to the estimate of the upper bound of the lifespan for $2<ple p_c(2)$. One of the novelties is that we can deal with the problem with flat metric and general obstacles (bounded and simple connected), and it will be reduced to the corresponding problem with compact perturbation of the flat metric outside a ball.



قيم البحث

اقرأ أيضاً

176 - Mengyun Liu 2021
In this work, we investigate the problem of finite time blow up as well as the upper bound estimates of lifespan for solutions to small-amplitude semilinear wave equations with time dependent damping and potential, and mixed nonlinearities $c_1 |u_t| ^p+c_2 |u|^q$, posed on asymptotically Euclidean manifolds, which is related to both the Strauss conjecture and the Glassey conjecture.
In this work, we investigate the influence of general damping and potential terms on the blow-up and lifespan estimates for energy solutions to power-type semilinear wave equations. The space-dependent damping and potential functions are assumed to b e critical or short range, spherically symmetric perturbation. The blow up results and the upper bound of lifespan estimates are obtained by the so-called test function method. The key ingredient is to construct special positive solutions to the linear dual problem with the desired asymptotic behavior, which is reduced, in turn, to constructing solutions to certain elliptic eigenvalue problems.
132 - Mengyun Liu , Chengbo Wang 2019
In this paper, we investigate the problem of blow up and sharp upper bound estimates of the lifespan for the solutions to the semilinear wave equations, posed on asymptotically Euclidean manifolds. Here the metric is assumed to be exponential perturb ation of the spherical symmetric, long range asymptotically Euclidean metric. One of the main ingredients in our proof is the construction of (unbounded) positive entire solutions for $Delta_{g}phi_lambda=lambda^{2}phi_lambda$, with certain estimates which are uniform for small parameter $lambdain (0,lambda_0)$. In addition, our argument works equally well for semilinear damped wave equations, when the coefficient of the dissipation term is integrable (without sign condition) and space-independent.
In this work, we investigate the problem of finite time blow up as well as the upper bound estimates of lifespan for solutions to small-amplitude semilinear wave equations with mixed nonlinearities $a |u_t|^p+b |u|^q$, posed on asymptotically Euclide an manifolds, which is related to both the Strauss conjecture and Glassey conjecture. In some cases, we obtain existence results, where the lower bound of the lifespan agrees with the upper bound in order. In addition, our results apply for semilinear damped wave equations, when the coefficient of the dissipation term is integrable (without sign condition) and space-independent.
The purpose of the present paper is to establish the local energy decay estimates and dispersive estimates for 3-dimensional wave equation with a potential to the initial-boundary value problem on exterior domains. The geometrical assumptions on doma ins are rather general, for example non-trapping condition is not imposed in the local energy decay result. As a by-product, Strichartz estimates is obtained too.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا