ﻻ يوجد ملخص باللغة العربية
This work shows that bulk ionic liquids (ILs) and their water solution can be conveniently investigated by synchrotron-based UV resonance Raman (UVRR) spectroscopy. The main advantages of this technique for the investigation of the local structure and intermolecular interactions in imidazolium-based ILs are presented and discussed. The unique tunability of synchrotron source allows one to selectively enhance in the Raman spectra the vibrational signals arising from the imidazolium ring. Such signals showed good sensitivity to the modifications induced in the local structure of ILs by i) the change of anion and ii) the progressively longer alkyl chain substitution on the imidazolium ring. Moreover, some UVRR signals are specifically informative on the effect induced by addition of water on the strength of cation-anion H-bonds in IL-water solutions. All of these results corroborate the potentiality of UVRR to retrieve information on the intermolecular interactions in IL-water solutions, besides the counterpart obtained by employing on these systems the spontaneous Raman scattering technique.
A simple non-local theoretical model is developed considering concentrated ionic surfactant solutions as regular ones. Their thermodynamics is described by the Cahn-Hilliard theory coupled with electrostatics. It is discovered that unstable solutions
When analyzing the broadband absorption spectrum of liquid water (10^10 - 10^13 Hz), we find its relaxation-resonance features to be an indication of Frenkels translation-oscillation motion of particles, which is fundamentally inherent to liquids. We
Dynamics of a coarse-grained model for the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium hexafluorophosphate, couched in the united-atom site representation are studied via molecular dynamics simulations. The dynamically heterogeneous be
Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken
The study of liquid-liquid phase transition has attracted considerable attention. One interesting example of such phenomenon is phosphorus for which the existence a first-order phase transition between a low density insulating molecular phase and a c