ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusion-Oscillatory Dynamics in Liquid Water on Data of Dielectric Spectroscopy

115   0   0.0 ( 0 )
 نشر من قبل Vasily Artemov G
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When analyzing the broadband absorption spectrum of liquid water (10^10 - 10^13 Hz), we find its relaxation-resonance features to be an indication of Frenkels translation-oscillation motion of particles, which is fundamentally inherent to liquids. We have developed a model of water structure, of which the dynamics is due to diffusion of particles, neutral H2O molecules and H3O+ and OH- ions - with their periodic localizations and mutual transformations. This model establishes for the first time a link between the dc conductivity, the Debye and the high frequency sub-Debye relaxations and the infrared absorption peak at 180 cm-1. The model reveals the characteristic times of the relaxations, 50 ps and 3 ps, as the lifetimes of water molecules and water ions, respectively. The model sheds light on the anomalous mobility of a proton and casts doubt on the long lifetime of a water molecule, 10 hours, commonly associated with autoionization.



قيم البحث

اقرأ أيضاً

163 - Benjamin Malfait 2021
We have investigated the dynamics of water confined in mesostructured porous silicas (SBA-15, MCM-41) and four periodic mesoporous organosilicas (PMOs) by dielectric relaxation spectroscopy. The influence of water-surface interaction has been control led by the carefully designed surface chemistry of PMOs that involved organic bridges connecting silica moieties with different repetition lengths, hydrophilicity and H-bonding capability. Relaxation processes attributed to the rotational motions of non-freezable water located in the vicinity of the pore surface were studied in the temperature range from 140 K to 225 K. Two distinct situations were achieved depending on the hydration level: at low relative humidity (33% RH), water formed a non-freezable layer adsorbed on the pore surface. At 75% RH, water formed an interfacial liquid layer sandwiched between the pore surface and the ice crystallized in the pore center. In the two cases, the study revealed different water dynamics and different dependence on the surface chemistry. We infer that these findings illustrate the respective importance of water-water and water-surface interactions in determining the dynamics of the interfacial liquid-like water and the adsorbed water molecules, as well as the nature of the different H-bonding sites present on the pore surface.
60 - C. Bottari , B. Rossi , A. Mele 2019
This work shows that bulk ionic liquids (ILs) and their water solution can be conveniently investigated by synchrotron-based UV resonance Raman (UVRR) spectroscopy. The main advantages of this technique for the investigation of the local structure an d intermolecular interactions in imidazolium-based ILs are presented and discussed. The unique tunability of synchrotron source allows one to selectively enhance in the Raman spectra the vibrational signals arising from the imidazolium ring. Such signals showed good sensitivity to the modifications induced in the local structure of ILs by i) the change of anion and ii) the progressively longer alkyl chain substitution on the imidazolium ring. Moreover, some UVRR signals are specifically informative on the effect induced by addition of water on the strength of cation-anion H-bonds in IL-water solutions. All of these results corroborate the potentiality of UVRR to retrieve information on the intermolecular interactions in IL-water solutions, besides the counterpart obtained by employing on these systems the spontaneous Raman scattering technique.
The properties of model solutions consisting of a solute --- single curcumin molecule in water, methanol and dimethyl sulfoxide solvents have been studied using molecular dynamics (MD) computer simulations in the isobaric-isothermal ensemble. The uni ted atom OPLS force field (OPLS-UA) model for curcumin molecule proposed by us recently [J. Mol. Liq., 2016, 223, 707] in combination with the SPC/E water, and the OPLS-UA type models for methanol and dimethyl sulfoxide have been applied. We have described changes of the internal structure of the solute molecule induced by different solvent media in very detail. The pair distribution functions between particular fragments of a solute molecule with solvent particles have been analyzed. Statistical features of the hydrogen bonding between different species were explored. Finally, we have obtained a self-diffusion coefficient of curcumin molecules in three model solvents.
101 - Hamza Chraibi 2009
Water management is a key factor that limits PEFCs performance. We show how insights into this problem can be gained from pore-scale simulations of water invasion in a model fibrous medium. We explore the influence of contact angle on the water invas ion pattern and water saturation at breakthrough and show that a dramatic change in the invasion pattern, from fractal to compact, occurs as the system changes from hydrophobic to hydrophilic. Then, we explore the case of a system of mixed wettability, i.e. containing both hydrophilic and hydrophobic pores. The saturation at breakthrough is studied as a function of the fraction of hydrophilic pores. The results are discussed in relation with the water management problem, the optimal design of a GDL and the fuel cell performance degradation mechanisms. We outline how the study could be extended to 3D systems, notably from binarised images of GDLs obtained by X ray microtomography.
Employing X-ray photon correlation spectroscopy we measure the kinetics and dynamics of a pressure-induced liquid-liquid phase separation (LLPS) in a water-lysozyme solution. Scattering invariants and kinetic information provide evidence that the sys tem reaches the phase boundary upon pressure-induced LLPS with no sign of arrest. The coarsening slows down with increasing quench depths. The $g_2$-functions display a two-step decay with a gradually increasing non-ergodicity parameter typical for gelation. We observe fast superdiffusive ($gamma geq 3/2$) and slow subdiffusive ($gamma < 0.6$) motion associated with fast viscoelastic fluctuations of the network and a slow viscous coarsening process, respectively. The dynamics age linear with time $tau propto t_mathrm{w}$ and we observe the onset of viscoelastic relaxation for deeper quenches. Our results suggest that the protein solution gels upon reaching the phase boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا