ﻻ يوجد ملخص باللغة العربية
In arXiv:1201.4067 and arXiv:1611.08030, Eyink and Shi and Chibbaro et al., respectively, formally derived an infinite, coupled hierarchy of equations for the spectral correlation functions of a system of weakly interacting nonlinear dispersive waves with random phases in the standard kinetic limit. Analogously to the relationship between the Boltzmann hierarchy and Boltzmann equation, this spectral hierarchy admits a special class of factorized solutions, where each factor is a solution to the wave kinetic equation (WKE). A question left open by these works and highly relevant for the mathematical derivation of the WKE is whether solutions of the spectral hierarchy are unique, in particular whether factorized initial data necessarily lead to factorized solutions. In this article, we affirmatively answer this question in the case of 4-wave interactions by showing, for the first time, that this spectral hierarchy is well-posed in an appropriate function space. Our proof draws on work of Chen and Pavlovi{c} for the Gross-Pitaevskii hierarchy in quantum many-body theory and of Germain et al. for the well-posedness of the WKE.
We present a new, simpler proof of the unconditional uniqueness of solutions to the cubic Gross-Pitaevskii hierarchy in $R^3$. One of the main tools in our analysis is the quantum de Finetti theorem. Our uniqueness result is equivalent to the one est
Let $$L_0=suml_{j=1}^nM_j^0D_j+M_0^0,,,,,D_j=frac{1}{i}frac{pa}{paxj}, quad xinRn,$$ be a constant coefficient first-order partial differential system, where the matrices $M_j^0$ are Hermitian. It is assumed that the homogeneous part is stron
This paper is a synopsis of the recent book A. Boritchev, S. Kuksin, textit{One-Dimensional Turbulence and the Stochastic Burgers Equation}, AMS Publications, 2021 (to appear). The book is dedicated to the stochastic Burgers equation as a model for 1
We continue the study of small amplitude solutions of the damped/driven cubic NLS equation, written as formal series in the amplitude, initiated in our previous work [Formal expansions in stochastic model for wave turbulence 1: kinetic limit, arXiv:1
We consider two-dimensional Pauli and Dirac operators with a polynomially vanishing magnetic field. The main results of the paper provide resolvent expansions of these operators in the vicinity of their thresholds. It is proved that the nature of the