ترغب بنشر مسار تعليمي؟ اضغط هنا

New insight on the far-UV SED and HeII emission from low metallicity galaxies

110   0   0.0 ( 0 )
 نشر من قبل Daniel Schaerer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Schaerer




اسأل ChatGPT حول البحث

Understanding the ionizing spectrum of low-metallicity galaxies is of great importance for modeling and interpreting emission line observations of early/distant galaxies. Although a wide suite of stellar evolution, atmosphere, population synthesis, and photoionization models, taking many physical processes into account now exist, all models face a common problem: the inability to explain the presence of nebular HeII emission, which is observed in many low metallicity galaxies, both in UV and optical spectra. Several possible explanations have been proposed in the literature, including Wolf-Rayet (WR) stars, binaries, very massive stars, X-ray sources, or shocks. However, none has so far been able to explain the major observations. We briefly discuss the HeII problem, available empirical data, and observed trends combining X-ray, optical and other studies. We present a simple and consistent physical model showing that X-ray binaries could explain the long-standing nebular HeII problem. Our model, described in Schaerer et al. (2019), successfully explains the observed trends and strength of nebular HeII emission in large samples of low metallicity galaxies and in individual galaxies, which have been studied in detail and with multi-wavelength observations. Our results have in particular important implications for the interpretation of galaxy spectra in the early Universe, which will be obtained with upcoming and future facilities.



قيم البحث

اقرأ أيضاً

187 - D. Schaerer 2019
The origin of nebular HeII emission, which is frequently observed in low-metallicity (O/H) star-forming galaxies, remains largely an unsolved question. Using the observed anticorrelation of the integrated X-ray luminosity per unit of star formation r ate ($L_X/{rm SFR}$) of an X-ray binary population with metallicity and other empirical data from the well-studied galaxy I Zw 18, we show that the observed HeII 4686 intensity and its trend with metallicity is naturally reproduced if the bulk of He$^+$ ionizing photons are emitted by the X-ray sources. We also show that a combination of X-ray binary population models with normal single and/or binary stellar models reproduces the observed $I(4686)/I(Hbeta)$ intensities and its dependency on metallicity and age. We conclude that both empirical data and theoretical models suggest that high-mass X-ray binaries are the main source of nebular HeII emission in low-metallicity star-forming galaxies.
The power mechanism and accretion geometry for low-power FR1 radio galaxies is poorly understood in comparison to Seyfert galaxies and QSOs. In this paper we use the diagnostic power of the Lya recombination line observed using the Cosmic Origins Spe ctrograph (COS) aboard the Hubble Space Telescope (HST) to investigate the accretion flows in three well-known, nearby FR1s: M87, NGC4696, and HydraA. The Ly$alpha$ emission lines luminosity, velocity structure and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of the super-massive black hole (SMBH) in these radio-mode AGN. We observe strong Ly$alpha$ emission in all three objects with similar total luminosity to that seen in BL Lacertae objects. M87 shows a complicated emission line profile in Lya which varies spatially across the COS aperture and possibly temporally over several epochs of observation. In both NGC 4696 and M87, the Ly$alpha$ luminosities $sim 10^{40}$ ergs/s are closely consistent with the observed strength of the ionizing continuum in Case B recombination theory and with the assumption of near unity covering factor. It is possible that the Ly$alpha$ emitting clouds are ionized largely by beamed radiation associated with the jets. Long-slit UV spectroscopy can be used to test this hypothesis. Hydra A and the several BL Lac objects studied in this and previous papers have Lya luminosities larger than M87 but their extrapolated, non-thermal continua are so luminous that they over-predict the observed strength of Ly$alpha$, a clear indicator of relativistic beaming in our direction. Given their substantial space density ($sim 4times10^{-3} Mpc^{-3}$) the unbeamed Lyman continuum radiation of FR1s may make a substantial minority contribution (~10%) to the local UV background if all FR1s are similar to M87 in ionizing flux level.
We have targeted two recently discovered Lyman break galaxies (LBGs) to search for dust continuum and [CII] 158 micron line emission. The strongly lensed z~6.8 LBG A1703-zD1 behind the galaxy cluster Abell 1703, and the spectroscopically confirmed z= 7.508 LBG z8-GND-5296 in the GOODS-N field have been observed with the Plateau de Bure interferometer (PdBI) at 1.2mm. These observations have been combined with those of three z>6.5 Lya emitters (named HCM6A, Himiko, and IOK-1), for which deep measurements were recently obtained with the PdBI and ALMA. [CII] is undetected in both galaxies, providing a deep upper limit for Abell1703-zD1, comparable to recent ALMA non-detections. Dust continuum emission from Abell1703-zD1 and z8-GND-5296 is not detected with an rms of 0.12 and 0.16 mJy/beam. From these non-detections we derive upper limits on their IR luminosity and star formation rate, dust mass, and UV attenuation. Thanks to strong gravitational lensing the limit for Abell1703-zD1 is probing the sub-LIRG regime ($L_{IR} <8.1 times 10^{10}$ Lsun) and very low dust masses ($M_d<1.6 times 10^7$ Msun). We find that all five galaxies are compatible with the Calzetti IRX-$beta$ relation, their UV attenuation is compatible with several indirect estimates from other methods (the UV slope, extrapolation of the attenuation measured from the IR/UV ratio at lower redshift, and SED fits), and the dust-to-stellar mass ratio is not incompatible with that of galaxies from z=0 to 3. For their stellar mass the high-z galaxies studied here have an attenuation below the one expected from the mean relation of low redshift (z<1.5) galaxies. More and deeper (sub)-mm data are clearly needed to directly determine the UV attenuation and dust content of the dominant population of high-z star-forming galaxies and to establish more firmly their dependence on stellar mass, redshift, and other properties.
In an earlier paper we modeled the far-infrared emission from a star-forming galaxy using the photoionisation code CLOUDY and presented metallicity sensitive diagnostics based on far-infrared fine structure line ratios. Here, we focus on the applicab ility of the [OIII]88/[NII]122 microns line ratio as a gas phase metallicity indicator in high redshift submillimetre luminous galaxies. The [OIII]88/[NII]122 microns ratio is strongly dependent on the ionization parameter (which is related to the total number of ionizing photons) as well as the gas electron density. We demonstrate how the ratio of 88/$122 continuum flux measurements can provide a reasonable estimate of the ionization parameter while the availability of the [NII]205 microns line can constrain the electron density. Using the [OIII]88/[NII]122 microns line ratios from a sample of nearby normal and star-forming galaxies we measure their gas phase metallicities and find that their mass metallicity relation is consistent with the one derived using optical emission lines. Using new, previously unpublished, Herschel spectroscopic observations of key far-infrared fine structure lines of the z~3 galaxy HLSW-01 and additional published measurements of far-infrared fine structure lines of high-z submillimetre luminous galaxies we derive gas phase metallicities using their [OIII]88/[NII]122 microns line ratio. We find that the metallicities of these z~3 submm luminous galaxies are consistent with solar metallicities and that they appear to follow the mass-metallicity relation expected for z~3 systems.
We present new ultraviolet (UV) observations of the luminous compact blue galaxy KISSR242, obtained with the HST-COS. We identify multiple resolved sub-arcsecond near-UV sources within the COS aperture. The far-UV spectroscopic data show strong outfl ow absorption lines, consistent with feedback processes related to an episode of massive star-formation. OI, CII, and SiII--SiIV are observed with a mean outflow velocity v_{out} = -60 km/s. We also detect faint fine-structure emission lines of singly ionized silicon for the first time in a low-redshift starburst galaxy. These emissions have been seen previously in deep Lyman break galaxy surveys at z ~ 3. The SiII* lines are at the galaxy rest velocity, and they exhibit a quantitatively different line profile from the absorption features. These lines have a width of ~ 75 km/s, too broad for point-like emission sources such as the HII regions surrounding individual star clusters. The size of the SiII* emitting region is estimated to be ~ 250 pc. We discuss the possibility of this emission arising in overlapping super star cluster HII regions, but find this explanation to be unlikely in light of existing far-UV observations of local star-forming galaxies. We suggest that the observed SiII* emission originates in a diffuse warm halo populated by interstellar gas driven out by intense star-formation and/or accreted during a recent interaction that may be fueling the present starburst episode in KISSR242.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا