ﻻ يوجد ملخص باللغة العربية
In an earlier paper we modeled the far-infrared emission from a star-forming galaxy using the photoionisation code CLOUDY and presented metallicity sensitive diagnostics based on far-infrared fine structure line ratios. Here, we focus on the applicability of the [OIII]88/[NII]122 microns line ratio as a gas phase metallicity indicator in high redshift submillimetre luminous galaxies. The [OIII]88/[NII]122 microns ratio is strongly dependent on the ionization parameter (which is related to the total number of ionizing photons) as well as the gas electron density. We demonstrate how the ratio of 88/$122 continuum flux measurements can provide a reasonable estimate of the ionization parameter while the availability of the [NII]205 microns line can constrain the electron density. Using the [OIII]88/[NII]122 microns line ratios from a sample of nearby normal and star-forming galaxies we measure their gas phase metallicities and find that their mass metallicity relation is consistent with the one derived using optical emission lines. Using new, previously unpublished, Herschel spectroscopic observations of key far-infrared fine structure lines of the z~3 galaxy HLSW-01 and additional published measurements of far-infrared fine structure lines of high-z submillimetre luminous galaxies we derive gas phase metallicities using their [OIII]88/[NII]122 microns line ratio. We find that the metallicities of these z~3 submm luminous galaxies are consistent with solar metallicities and that they appear to follow the mass-metallicity relation expected for z~3 systems.
We present Herschel observations of six fine-structure lines in 25 Ultraluminous Infrared Galaxies at z<0.27. The lines, [O III]52, [N III]57, [O I]63, [N II]122, [O I]145, and [C II]158, are mostly single gaussians with widths <600 km s-1 and lumino
The Nitrogen-to-Oxygen (N/O) abundance ratio is an important diagnostic of galaxy evolution since the ratio is closely tied to the growth of metallicity and the star formation history in galaxies. Estimates for the N/O ratio are traditionally accompl
We present Herschel far-IR photometry and spectroscopy as well as ground based CO observations of an intermediate redshift (0.21 < z < 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L_IR > 10^11.5L_sun). With these measurements
We report the first results from a spectroscopic survey of the [CII] 158um line from a sample of intermediate redshift (0.2<z<0.8) (ultra)-luminous infrared galaxies, (U)LIRGs (LIR>10^11.5 Lsun), using the SPIRE-Fourier Transform Spectrometer (FTS) o
Our research on the age-metallicity and mass-metallicity relations of galaxies is presented and compared to the most recent investigations in the field. We have been able to measure oxygen abundances using the direct method for objects spanning four