ﻻ يوجد ملخص باللغة العربية
Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model, based upon which a two-dimensional cylindrical kinetics model is developed for the oxidation of silicon nanowires and is extended for tungsten. In the model, diffusivity is affected by the expansive oxidation reaction induced stress. The dependency of the oxidation upon curvature and temperature is modeled. Good agreement between the model predictions and available experimental data is obtained. The developed model serves to quantify the oxidation in two-dimensional nanostructures and is expected to facilitate their fabrication via thermal oxidation techniques. https://doi.org/10.1016/j.taml.2016.08.002
Developing a comprehensive understanding of the modification of material properties by neutron irradiation is important for the design of future fission and fusion power reactors. Self-ion implantation is commonly used to mimic neutron irradiation da
The role of reduced dimensionality and of the surface on electron-phonon (e-ph) coupling in silicon nanowires is determined from first principles. Surface termination and chemistry is found to have a relatively small influence, whereas reduced dimens
We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. The Raman spectroscopy was conducted using three different excitation lase
Van der Waals heterostructure based on layered two-dimensional (2D) materials offers unprecedented opportunities to create materials with atomic precision by design. By combining superior properties of each component, such heterostructure also provid
Silicon dioxide or silica, normally existing in various bulk crystalline and amorphous forms, is recently found to possess a two-dimensional structure. In this work, we use ab initio calculation and evolutionary algorithm to unveil three new 2D silic