ﻻ يوجد ملخص باللغة العربية
The role of reduced dimensionality and of the surface on electron-phonon (e-ph) coupling in silicon nanowires is determined from first principles. Surface termination and chemistry is found to have a relatively small influence, whereas reduced dimensionality fundamentally alters the behavior of deformation potentials. As a consequence, electron coupling to breathing modes emerges that cannot be described by conventional treatments of e-ph coupling. The consequences for physical properties such as scattering lengths and mobilities are significant: the mobilities for [110] grown wires are 6 times larger than those for [100] wires, an effect that cannot be predicted without the form we find for Si nanowire deformation potentials.
Vacancy centers in diamond have proven to be a viable solid-state platform for quantum coherent opto-electronic applications. Among the variety of vacancy centers, silicon-vacancy (SiV) centers have recently attracted much attention as an inversion-s
We present a combined experimental and theoretical study of the surface vibrational modes of the topological insulator (TI) Bi$_2$Se$_3$ with particular emphasis on the low-energy region below 10 meV that has been difficult to resolve experimentally.
Time and angular resolved photoelectron spectroscopy is a powerful technique to measure electron dynamics in solids. Recent advances in this technique have facilitated band and energy resolved observations of the effect that excited phonons, have on
We study the electron-phonon coupling in the C60 fullerene within the first-principles GW approach, focusing on the lowest unoccupied t1u three-fold electronic state which is relevant for the superconducting transition in electron doped fullerides. I
The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions (EPI) in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing tempera