ﻻ يوجد ملخص باللغة العربية
We present the structure theorem for the positive support of the cube of the Grover transition matrix of the discrete-time quantum walk (the Grover walk) on a general graph $G$ under same condition. Thus, we introduce a zeta function on the positive support of the cube of the Grover transition matrix of $G$, and present its Euler product and its determinant expression. As a corollary, we give the characteristic polynomial for the positive support of the cube of the Grover transition matrix of a regular graph, and so obtain its spectra. Finally, we present the poles and the radius of the convergence of this zeta function.
The finite dihedral group generated by one rotation and one flip is the simplest case of the non-abelian group. Cayley graphs are diagrammatic counterparts of groups. In this paper, much attention is given to the Cayley graph of the dihedral group. C
Quantum percolation describes the problem of a quantum particle moving through a disordered system. While certain similarities to classical percolation exist, the quantum case has additional complexity due to the possibility of Anderson localisation.
We consider the second weighted Bartholdi zeta function of a graph $G$, and present weight
We define a correlated random walk (CRW) induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph $G$, and present a formula for the characteristic polynomial of the transition probability matrix of this CRW by using a
We define a zeta function of a graph by using the time evolution matrix of a general coined quantum walk on it, and give a determinant expression for the zeta function of a finite graph. Furthermore, we present a determinant expression for the zeta function of an (infinite) periodic graph.