ﻻ يوجد ملخص باللغة العربية
We define a correlated random walk (CRW) induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph $G$, and present a formula for the characteristic polynomial of the transition probability matrix of this CRW by using a determinant expression for the generalized weighted zeta function of $G$. As applications, we give the spectrum of the transition probability matrices for the CRWs induced from the Grover matrices of regular graphs and semiregular bipartite graphs. Furthermore, we consider another type of the CRW on a graph.
Given a random walk a method is presented to produce a matrix of transition probabilities that is consistent with that random walk. The method is a kind of reverse application of the usual ergodicity and is tested by using a transition matrix to prod
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope $gamma-epsilon$, where $gamma$ denotes the
A t by n random matrix A is formed by sampling n independent random column vectors, each containing t components. The random Gram matrix of size n, G_n, contains the dot products between all pairs of column vectors in the randomly generated matrix A;
In 1991, Persi Diaconis and Daniel Stroock obtained two canonical path bounds on the second largest eigenvalue for simple random walk on a connected graph, the Poincare and Cheeger bounds, and they raised the question as to whether the Poincare bound
Very sparse random graphs are known to typically be singular (i.e., have singular adjacency matrix), due to the presence of low-degree dependencies such as isolated vertices and pairs of degree-1 vertices with the same neighbourhood. We prove that th