ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum percolation and transition point of a directed discrete-time quantum walk

124   0   0.0 ( 0 )
 نشر من قبل C. M. Chandrashekar
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum percolation describes the problem of a quantum particle moving through a disordered system. While certain similarities to classical percolation exist, the quantum case has additional complexity due to the possibility of Anderson localisation. Here, we consider a directed discrete-time quantum walk as a model to study quantum percolation of a two-state particle on a two-dimensional lattice. Using numerical analysis we determine the fraction of connected edges required (transition point) in the lattice for the two-state particle to percolate with finite (non-zero) probability for three fundamental lattice geometries, finite square lattice, honeycomb lattice, and nanotube structure and show that it tends towards unity for increasing lattice sizes. To support the numerical results we also use a continuum approximation to analytically derive the expression for the percolation probability for the case of the square lattice and show that it agrees with the numerically obtained results for the discrete case. Beyond the fundamental interest to understand the dynamics of a two-state particle on a lattice (network) with disconnected vertices, our study has the potential to shed light on the transport dynamics in various quantum condensed matter systems and the construction of quantum information processing and communication protocols.



قيم البحث

اقرأ أيضاً

We study the percolation of a quantum particle on quasicrystal lattices and compare it with the square lattice. For our study, we have considered quasicrystal lattices modelled on the pentagonally symmetric Penrose tiling and the octagonally symmetri c Ammann-Beenker tiling. The dynamics of the quantum particle is modelled using continuous-time quantum walk (CTQW) formalism. We present a comparison of the behaviour of the CTQW on the two aperiodic quasicrystal lattices and the square lattice when all the vertices are connected and when disorder is introduced in the form of disconnections between the vertices. Unlike on a square lattice, we see a significant fraction of quantum state localised around the origin in quasicrystal lattice. With increase in disorder, the percolation probability of a particle on a quasicrystal lattice decreases significantly faster when compared to the square lattice. This study sheds light on the minimum fraction of disconnections allowed to see percolation of quantum particle on these quasicrystal lattices.
The non-integrability of quantum systems, often associated with chaotic behavior, is a concept typically applied to cases with a high-dimensional Hilbert space Among different indicators signaling this behavior, the study of the long-time oscillation s of the out-of-time-ordered correlator (OTOC) appears as a versatile tool, that can be adapted to the case of systems with a small number of degrees of freedom. Using such an approach, we consider the oscillations observed after the scrambling time in the measurement of OTOCs of local operators for an Ising spin chain on a nuclear magnetic resonance quantum simulator [J. Li,et al, Phys. Rev. X 7, 031011 (2017)]. We show that the systematic of the OTOC oscillations describes qualitatively well, in a chain with only 4 spins, the integrability-to-chaos transition inherited from the infinite chain.
The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communi cation protocols. Here we propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack. Additionally, theproposed CQD protocol is shown to be unconditionally secure against an untrusted service providerand both the protocols are shown more secure against the intercept resend attack as compared tothe qubit based LM05/DL04 protocol.
Deterministically aperiodic sequences are an intermediary between periodic sequences and completely random sequences. Materials which are translationally periodic have Bloch-like extended states, while random media exhibit Anderson localisation. Mate rials constructed on the basis of deterministic aperiodic sequences such as Fibonacci, Thue-Morse, and Rudin-Shapiro exhibit different properties, which can be related to their spectrum. Here, by investigating the dynamics of discrete-time quantum walks using different aperiodic sequences of coin operations in position space and time we establish the role of the diffraction spectra in characterizing the spreading of the wavepacket.
We investigate thermalization dynamics of a driven dipolar many-body quantum system through the stability of discrete time crystalline order. Using periodic driving of electronic spin impurities in diamond, we realize different types of interactions between spins and demonstrate experimentally that the interplay of disorder, driving and interactions leads to several qualitatively distinct regimes of thermalization. For short driving periods, the observed dynamics are well described by an effective Hamiltonian which sensitively depends on interaction details. For long driving periods, the system becomes susceptible to energy exchange with the driving field and eventually enters a universal thermalizing regime, where the dynamics can be described by interaction-induced dephasing of individual spins. Our analysis reveals important differences between thermalization of long-range Ising and other dipolar spin models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا