ﻻ يوجد ملخص باللغة العربية
We present a set of experiments to optimize the performance of the noninvasive thermometer based on proximity superconductivity. Current through a standard tunnel junction between an aluminum superconductor and a copper electrode is controlled by the strength of the proximity induced to this normal metal, which in turn is determined by the position of a direct superconducting contact from the tunnel junction. Several devices with different distances were tested. We develop a theoretical model based on Usadel equations and dynamic Coulomb blockade which reproduces the measured results and yields a tool to calibrate the thermometer and to optimize it further in future experiments.
We present radio-frequency thermometry based on a tunnel junction between a superconductor and proximitized normal metal. It allows operation in a wide range of biasing conditions. We demonstrate that the standard finite-bias quasiparticle tunneling
We demonstrate radiofrequency thermometry on a micrometer-sized metallic island below 100 mK. Our device is based on a normal metal-insulator-superconductor tunnel junction coupled to a resonator with transmission readout. In the first generation of
A proximity-effect thermometer measures the temperature dependent critical supercurrent in a long superconductor - normal metal - superconductor (SNS) Josephson junction. Typically, the transition from the superconducting to the normal state is detec
We present a high-sensitivity measurement technique for mechanical nanoresonators. Due to intrinsic nonlinear effects, different flexural modes of a nanobeam can be coupled while driving each of them on resonance. This mode-coupling scheme is dispers
A thermocouple of Au-Ni with only 2.5-micrometers-wide electrodes on a 30-nm-thick Si3N4 membrane was fabricated by a simple low-resolution electron beam lithography and lift off procedure. The thermocouple is shown to be sensitive to heat generated