ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-invasive thermometer based on proximity superconductor for ultra-sensitive calorimetry

98   0   0.0 ( 0 )
 نشر من قبل Bayan Karimi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present radio-frequency thermometry based on a tunnel junction between a superconductor and proximitized normal metal. It allows operation in a wide range of biasing conditions. We demonstrate that the standard finite-bias quasiparticle tunneling thermometer suffers from large dissipation and loss of sensitivity at low temperatures, whereas thermometry based on zero bias anomaly avoids both these problems. For these reasons the latter method is suitable down to lower temperatures, here to about 25 mK. Both thermometers are shown to measure the same local temperature of the electrons in the normal metal in the range of their applicability.



قيم البحث

اقرأ أيضاً

We present a set of experiments to optimize the performance of the noninvasive thermometer based on proximity superconductivity. Current through a standard tunnel junction between an aluminum superconductor and a copper electrode is controlled by the strength of the proximity induced to this normal metal, which in turn is determined by the position of a direct superconducting contact from the tunnel junction. Several devices with different distances were tested. We develop a theoretical model based on Usadel equations and dynamic Coulomb blockade which reproduces the measured results and yields a tool to calibrate the thermometer and to optimize it further in future experiments.
We present a thermometry scheme to extract the temperature of a 2DEG by monitoring the charge occupation of a weakly tunnel-coupled thermometer quantum dot using a quantum point contact detector. Electronic temperatures between 97 mK and 307 mK are m easured by this method with an accuracy of up to 3 mK, and agree with those obtained by measuring transport through a quantum dot. The thermometer does not pass a current through the 2DEG, and can be incorporated as an add-on to measure the temperature simultaneously with another operating device. Further, the tuning is independent of temperature.
We propose and numerically simulate an optoelectronic compact circular polarimeter. It allows to electrically measure the degree of circular polarization and light intensity at room temperature for a wide range of incidence angles in a single shot. T he device, being based on GaAsN, is easy to integrate into standard electronics and does not require bulky movable parts nor extra detectors. Its operation hinges mainly on two phenomena: the spin dependent capture of electrons and the hyperfine interaction between bound electrons and nuclei on Ga$^{2+}$ paramagnetic centers in GaAsN. The first phenomenon confers the device with sensitivity to the degree of circular polarization and the latter allows to discriminate the handedness of the incident light.
A thermocouple of Au-Ni with only 2.5-micrometers-wide electrodes on a 30-nm-thick Si3N4 membrane was fabricated by a simple low-resolution electron beam lithography and lift off procedure. The thermocouple is shown to be sensitive to heat generated by laser as well as an electron beam. Nano-thin membrane was used to reach a high spatial resolution of energy deposition and to realise a heat source of sub-1 micrometer diameter. This was achieved due to a limited generation of secondary electrons, which increase a lateral energy deposition. A low thermal capacitance of the fabricated devices is useful for the real time monitoring of small and fast temperature changes, e.g., due to convection, and can be detected through an optical and mechanical barrier of the nano-thin membrane. Temperature changes up to ~2x10^5 K/s can be measured at 10 kHz rate. A simultaneous down-sizing of both, the heat detector and heat source strongly required for creation of thermal microscopy is demonstrated. Peculiarities of Seebeck constant (thermopower) dependence on electron injection into thermocouple are discussed. Modeling of thermal flows on a nano-membrane with presence of a micro-thermocouple was carried out to compare with experimentally measured temporal response.
We introduce a microwave bolometer aimed at high-quantum-efficiency detection of wave packet energy within the framework of circuit quantum electrodynamics, the ultimate goal being single microwave photon detection. We measure the differential therma l conductance between the detector and its heat bath, obtaining values as low as 5 fW/K at 50 mK. This is one tenth of the thermal conductance quantum and corresponds to a theoretical lower bound on noise-equivalent-power of order $10^{-20}$ $W/sqrt{mbox{Hz}}$ at 50 mK. By measuring the differential thermal conductance of the same bolometer design in qualitatively different environments and materials, we determine that electron--photon coupling dominates the thermalization of our nanobolometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا