ﻻ يوجد ملخص باللغة العربية
We present radio-frequency thermometry based on a tunnel junction between a superconductor and proximitized normal metal. It allows operation in a wide range of biasing conditions. We demonstrate that the standard finite-bias quasiparticle tunneling thermometer suffers from large dissipation and loss of sensitivity at low temperatures, whereas thermometry based on zero bias anomaly avoids both these problems. For these reasons the latter method is suitable down to lower temperatures, here to about 25 mK. Both thermometers are shown to measure the same local temperature of the electrons in the normal metal in the range of their applicability.
We present a set of experiments to optimize the performance of the noninvasive thermometer based on proximity superconductivity. Current through a standard tunnel junction between an aluminum superconductor and a copper electrode is controlled by the
We present a thermometry scheme to extract the temperature of a 2DEG by monitoring the charge occupation of a weakly tunnel-coupled thermometer quantum dot using a quantum point contact detector. Electronic temperatures between 97 mK and 307 mK are m
We propose and numerically simulate an optoelectronic compact circular polarimeter. It allows to electrically measure the degree of circular polarization and light intensity at room temperature for a wide range of incidence angles in a single shot. T
A thermocouple of Au-Ni with only 2.5-micrometers-wide electrodes on a 30-nm-thick Si3N4 membrane was fabricated by a simple low-resolution electron beam lithography and lift off procedure. The thermocouple is shown to be sensitive to heat generated
We introduce a microwave bolometer aimed at high-quantum-efficiency detection of wave packet energy within the framework of circuit quantum electrodynamics, the ultimate goal being single microwave photon detection. We measure the differential therma