ﻻ يوجد ملخص باللغة العربية
Building models from data is an integral part of the majority of data science workflows. While data scientists are often forced to spend the majority of the time available for a given project on data cleaning and exploratory analysis, the time available to practitioners to build actual models from data is often rather short due to time constraints for a given project. AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. In this position paper, we aim to discuss the impact of the rising popularity of such systems and how a user-centered interface for such systems could look like. More importantly, we also want to point out features that are currently missing in those systems and start to explore better usability of such systems from a data-scientists perspective.
Data science (DS) projects often follow a lifecycle that consists of laborious tasks for data scientists and domain experts (e.g., data exploration, model training, etc.). Only till recently, machine learning(ML) researchers have developed promising
The use of Automated Machine Learning (AutoML) systems are highly open-ended and exploratory. While rigorously evaluating how end-users interact with AutoML is crucial, establishing a robust evaluation methodology for such exploratory systems is chal
We argue that a key challenge in enabling usable and useful interactive task learning for intelligent agents is to facilitate effective Human-AI collaboration. We reflect on our past 5 years of efforts on designing, developing and studying the SUGILI
Machine learning (ML) is increasingly being used in image retrieval systems for medical decision making. One application of ML is to retrieve visually similar medical images from past patients (e.g. tissue from biopsies) to reference when making a me
Autonomous agents that can engage in social interactions witha human is the ultimate goal of a myriad of applications. A keychallenge in the design of these applications is to define the socialbehavior of the agent, which requires extensive content c