ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Evaluating Exploratory Model Building Process with AutoML Systems

67   0   0.0 ( 0 )
 نشر من قبل Sungsoo (Ray) Hong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of Automated Machine Learning (AutoML) systems are highly open-ended and exploratory. While rigorously evaluating how end-users interact with AutoML is crucial, establishing a robust evaluation methodology for such exploratory systems is challenging. First, AutoML is complex, including multiple sub-components that support a variety of sub-tasks for synthesizing ML pipelines, such as data preparation, problem specification, and model generation, making it difficult to yield insights that tell us which components were successful or not. Second, because the usage pattern of AutoML is highly exploratory, it is not possible to rely solely on widely used task efficiency and effectiveness metrics as success metrics. To tackle the challenges in evaluation, we propose an evaluation methodology that (1) guides AutoML builders to divide their AutoML system into multiple sub-system components, and (2) helps them reason about each component through visualization of end-users behavioral patterns and attitudinal data. We conducted a study to understand when, how, why, and applying our methodology can help builders to better understand their systems and end-users. We recruited 3 teams of professional AutoML builders. The teams prepared their own systems and let 41 end-users use the systems. Using our methodology, we visualized end-users behavioral and attitudinal data and distributed the results to the teams. We analyzed the results in two directions: what types of novel insights the AutoML builders learned from end-users, and (2) how the evaluation methodology helped the builders to understand workflows and the effectiveness of their systems. Our findings suggest new insights explaining future design opportunities in the AutoML domain as well as how using our methodology helped the builders to determine insights and let them draw concrete directions for improving their systems.



قيم البحث

اقرأ أيضاً

Building models from data is an integral part of the majority of data science workflows. While data scientists are often forced to spend the majority of the time available for a given project on data cleaning and exploratory analysis, the time availa ble to practitioners to build actual models from data is often rather short due to time constraints for a given project. AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. In this position paper, we aim to discuss the impact of the rising popularity of such systems and how a user-centered interface for such systems could look like. More importantly, we also want to point out features that are currently missing in those systems and start to explore better usability of such systems from a data-scientists perspective.
158 - Vivian Lai , Han Liu , Chenhao Tan 2020
To support human decision making with machine learning models, we often need to elucidate patterns embedded in the models that are unsalient, unknown, or counterintuitive to humans. While existing approaches focus on explaining machine predictions wi th real-time assistance, we explore model-driven tutorials to help humans understand these patterns in a training phase. We consider both tutorials with guidelines from scientific papers, analogous to current practices of science communication, and automatically selected examples from training data with explanations. We use deceptive review detection as a testbed and conduct large-scale, randomized human-subject experiments to examine the effectiveness of such tutorials. We find that tutorials indeed improve human performance, with and without real-time assistance. In particular, although deep learning provides superior predictive performance than simple models, tutorials and explanations from simple models are more useful to humans. Our work suggests future directions for human-centered tutorials and explanations towards a synergy between humans and AI.
Thinking of technology as a design material is appealing. It encourages designers to explore the materials properties to understand its capabilities and limitations, a prerequisite to generative design thinking. However, as a material, AI resists thi s approach because its properties emerge as part of the design process itself. Therefore, designers and AI engineers must collaborate in new ways to create both the material and its application experience. We investigate the co-creation process through a design study with 10 pairs of designers and engineers. We find that design probes with user data are a useful tool in defining AI materials. Through data probes, designers construct designerly representations of the envisioned AI experience (AIX) to identify desirable AI characteristics. Data probes facilitate divergent thinking, material testing, and design validation. Based on our findings, we propose a process model for co-creating AIX and offer design considerations for incorporating data probes in design tools.
This paper presents key principles and solutions to the challenges faced in designing a domain-specific conversational agent for the legal domain. It includes issues of scope, platform, architecture and preparation of input data. It provides function ality in answering user queries and recording user information including contact details and case-related information. It utilises deep learning technology built upon Amazon Web Services (AWS) LEX in combination with AWS Lambda. Due to lack of publicly available data, we identified two methods including crowdsourcing experiments and archived enquiries to develop a number of linguistic resources. This includes a training dataset, set of predetermined responses for the conversational agent, a set of regression test cases and a further conversation test set. We propose a hierarchical bot structure that facilitates multi-level delegation and report model accuracy on the regression test set. Additionally, we highlight features that are added to the bot to improve the conversation flow and overall user experience.
87 - Dylan Cashman 2018
Many visual analytics systems allow users to interact with machine learning models towards the goals of data exploration and insight generation on a given dataset. However, in some situations, insights may be less important than the production of an accurate predictive model for future use. In that case, users are more interested in generating of diverse and robust predictive models, verifying their performance on holdout data, and selecting the most suitable model for their usage scenario. In this paper, we consider the concept of Exploratory Model Analysis (EMA), which is defined as the process of discovering and selecting relevant models that can be used to make predictions on a data source. We delineate the differences between EMA and the well-known term exploratory data analysis in terms of the desired outcome of the analytic process: insights into the data or a set of deployable models. The contributions of this work are a visual analytics system workflow for EMA, a user study, and two use cases validating the effectiveness of the workflow. We found that our system workflow enabled users to generate complex models, to assess them for various qualities, and to select the most relevant model for their task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا